Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Barely any nanosilver from consumer products in the water

18.04.2013
Environmental toxicology

Nanosilver in wastewater can cause severe environmental damage if it occurs as a metal. A study conducted within the scope of the National Research Programme "Opportunities and Risks of Nanomaterials" (NRP 64) now shows that nanosilver is quickly transformed into less problematic substances on its way to the wastewater treatment plant. In addition, it is efficiently retained in the sewage sludge so that only a small portion of it reaches the water systems.

Nanosilver is the show horse in the nanotechnology stable – not only does it hold great promise for the future, it is already contained in hundreds of consumer products today. Cosmetics, food packaging, disinfectants and cleaning agents are but some examples. Nanosilver is also commonly used in antibacterial socks and functional clothing. An estimated 300 tonnes or more of nanosilver are used each year the world over – and a substantial part of it enters the water cycle via wastewater. Within the scope of the National Research Programme "Opportunities and Risks of Nanomaterials" (NRP 64), a team led by Ralf Kägi from Eawag in Dübendorf has for the first time examined more closely (*) just what happens to nanosilver on its journey from the drainpipe to the wastewater treatment plant, and in what form it is eventually released into the environment.

Wastewater samples and laboratory experiments
The researchers took samples from the Swiss wastewater system in order to study how nanosilver is transported. In addition, they established through laboratory experiments what happens to nanosilver in wastewater or in the wastewater treatment plant. They discovered that nanosilver does not remain in its metallic form for very long: it is efficiently transformed into a silver sulfide salt. "We presume that sulfidation already largely takes place in the sewer channel," Kägi says. That's good news, because "these salt crystals cause much fewer problems, the silver is much less soluble in this form". Dissolved ions are the main reason why silver can be harmful to the environment and can stop bacteria from getting to work in the sewage sludge.

The Eawag researchers have for the first time clearly shown that nanosilver, too, is quickly transformed into silver sulfide – regardless of how the particles are coated. Until now this effect was only known from wastewater produced by the photo industry. Whether as metallic nanoparticles, as dissolved silver ions or as an insoluble silver saline deposit, the original form of the silver apparently does not play a crucial role in sulfidation. However, the salination speed depends heavily on the size of the particles: small nanosilver (10 nanometres) is very rapidly transformed, while larger particles may never fully sulfidise and may continue to release silver ions into the environment.

Efficiently removing silver from wastewater
The researchers were also able to show that approximately 95% of the nanoparticles are bound in the sewage sludge. Only 5% of the silver remains in the treated water. This percentage could be further reduced by using better particle filters. Venturing into the nano dimension would not be necessary, though: the sulfidised nanosilver aggregates almost entirely on large particles in the wastewater. With a reasonable effort, they could be removed more efficiently from the wastewater than is presently the case.

The study did not examine what happens to nanosilver in the sewage sludge thereafter. In Switzerland, it is not permissible to use sewage sludge on farmland, and most of the sludge is therefore burned. The heavy metals separated in this process should not be released into the environment in large quantities.

(*) Kägi Ralf, Voegelin Andreas, Ort Christoph, Sinnet Brian, Thalmann Basilius, Krismer Jasmin, Hagendorfer Harald, Elumelu Maline and Mueller Elisabeth. Fate and transformation of silver nanoparticles in urban wastewater systems (2013). Water Research: doi 10.1016/j.watres.2012.11.060
(available as a PDF from the SNSF; e-mail: com@snf.ch)

About NRP 64
The aim of the National Research Programme "Opportunities and Risks of Nanomaterials" (NRP 64) is to close research gaps so that the opportunities and risks of using nanomaterials can be more accurately assessed. The results of the 23 research projects will serve as a basis for the preparation of guidelines for the production, use and disposal of nanomaterials. This will support the development and application of safe technologies, optimise the benefits of using nanomaterials and minimise risk for humans and the environment. NRP 64 has a budget of CHF 12 million and will run until October 2016.


Contact
Dr. Ralf Kägi
Eawag
Überlandstrasse 133
Postfach 611
8600 Dübendorf
Switzerland
Tel.: +41 58 765 52 73
E-mail: ralf.kaegi@eawag.ch

Communication division | idw
Further information:
http://www.nfp64.ch
http://www.snsf.ch

More articles from Life Sciences:

nachricht How glial cells develop in the brain from neural precursor cells
11.12.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

nachricht Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea
10.12.2018 | Max-Planck-Institut für Marine Mikrobiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>