Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New bacterial behavior observed

17.12.2009
PNAS study documents puzzling movement of electricity-producing bacteria near energy sources

Bacteria dance the electric slide, officially named electrokinesis by the USC geobiologists who discovered the phenomenon.

Their study, published online today in PNAS Early Edition, describes what appears to be an entirely new bacterial behavior.

The metal-metabolizing Shewanella oneidensis microbe does not just cling to metal in its environment, as previously thought. Instead, it harvests electrochemical energy obtained upon contact with the metal and swims furiously for a few minutes before landing again.

Electrokinesis is more than a curiosity. Laboratory director and co-author Kenneth Nealson, the Wrigley Professor of Geobiology at USC and discoverer of Shewanella, hopes to boost the power of microbe-based fuel cells enough to produce usable energy.

The discovery of electrokinesis does not achieve that goal directly, but it should help researchers to better tune the complex living engines of microbial fuel cells.

"To optimize the bacteria is far more complicated than to optimize the fuel cell," Nealson said.

Electrokinesis was discovered in 2007 by Nealson's graduate student Howard Harris, an undergraduate at the time.

Nealson had given Harris what seemed an ideal assignment for a double major in cinema and biophysics.

"I had asked him if he would just take some movies of these bacteria doing what they do," Nealson said.

Filming through a microscope is hardly simple, but with the help of co-author and biophysics expert Moh El-Naggar, assistant professor of physics and astronomy at USC, Harris was able to make a computer analysis of a time-lapse sequence of bacteria near metal oxide particles.

"Every time the bacteria were around these particles … there was a great deal of swimming activity," Nealson recalled.

Harris then discovered that bacteria displayed the same behavior around the electrode of a battery. The swimming stopped when the electrode turned off, suggesting that the activity was electrical in origin.

As is often true with discoveries, this one raises more questions than it answers. Two in particular intrigue the researchers:

Why do the bacteria expend valuable energy swimming around?

How do the bacteria find the metal and return to it? Do they sense it through an electric field or the behavior of other bacteria?

Nealson and his team so far have only educated guesses.

For the first question, Nealson believes that the bacteria may swim away from the metal because they have too many competitors.

Bacteria get energy in two steps: by absorbing dissolved nutrients and then by converting those nutrients into biologically useful forms of energy through respiration, or the loss of electrons to an electron acceptor such as iron or manganese (humans also respire through the loss of electrons to oxygen, one of the most powerful electron acceptors).

"If electrons don't flow, it doesn't matter how much food you have," Nealson said.

However, he added, "in some environments, the food is much more precious than the electron acceptors."

If a metal surface became too crowded for bacteria to absorb nutrients easily, they might want to swim away and come back.

For the second question, Harris and co-author Mandy Ward, assistant professor of research in earth sciences at USC, are planning other experiments to understand exactly how Shewanella find electron acceptors.

They expect the experiments to keep Harris busy through his doctoral thesis.

The other co-authors on the PNAS paper were Orianna Bretschger of the J. Craig Venter Institute in San Diego, Margaret Romine of Pacific Northwest National Laboratory, and Anna Obraztsova, staff scientist in the Nealson laboratory at USC.

Carl Marziali | EurekAlert!
Further information:
http://www.usc.edu

Further reports about: Laboratory PNAS Shewanella oneidensis USC powerful electron acceptors

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>