Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An approach to new antiviral medicines using a combination of genomics and proteomics

10.12.2015

World-wide recurrent seasonal influenza epidemic are mainly caused by influenza A viruses. However, these are frequently resistant to currently available antiviral medications. Scientists from the Paul-Ehrlich-Institut together with international research collaborators have identified a new target protein, which can be used to help develop novel antivirals in future. This was achieved by analysing the interactions between the influenza A virus and the infected cells in humans. Cell Host Microbe reports on these research results in its online edition of 9 December.

Between two and ten million people are infected with influenza viruses, that cause seasonal annual epidemics of disease. Influenza viruses are subdivided into influenza A, B, and C and their various subtypes. Influenza A viruses often constitute the main type of the circulating influenza viruses world-wide.


Human lung carcinoma cells infected with influenza A virus (nucleus in blue). The viral proteins haemagglutinin (green) and matrix protein 2 (red) are mainly located on the plasma membrane.

Source: Center for Microscopy and Image Analysis, University of Zurich

Influenza viruses undergo rapid genetic changes, therefore, influenza vaccines are adapted to the circulating seasonal influenza viruses each year. Moreover, drugs against influenza viruses, so-called antivirals, are required to treat infected individuals and are needed as a future treatment option for the occurrence of new (influenza) viruses – especially in the event of a pandemic. Meanwhile, however, a great number of influenza A viruses have become resistant to the currently available antiviral medications.

An approach to new effective antivirals against viruses is to inhibit the interaction between the virus and its host, i.e. the affected cells in the infected individual, since viruses use human cell proteins to reproduce and proliferate. A blockage of the interaction between virus proteins and cell proteins could inhibit the reproduction of the viruses, thus treating influenza successfully.

So far, the exact mechanism of interaction of influenza A virus with human cells have not been fully understood. Extensive systems-level data are available worldwide, but are seemingly discordant.

A joint collaborative research effort between four international research groups – including the group of Dr Renate König, head of the research team “Cellular Aspects of Pathogen-Host Interactions” at the Paul-Ehrlich-Institut have succeeded in generating a biochemical “map” of essential influenza A virus/host interactions. They achieved this by combining extensive genomic (relating to genes) and proteomic (relating to proteins) data analyses.

With the help of this map, the scientists identified UBR4 (ubiquitin protein ligase E3 component n-recognin 4), a protein in human cells which is responsible for “budding”, i.e. separating the viruses from the cell membrane, the exiting of the pathogen from the cell and subsequent proliferation within and outside the body. The scientists assume that UBR4 is “borrowed” by the virus to deactivate a protection mechanism in humans using its enzymatic function.

According to the scientists, this protection mechanism is as yet not known in detail. The scientists assume that it causes degradation of the viral proteins thus stopping them from being transported to the cell membrane. Based on this model, the influenza A virus thus buys itself a safe passage to the cell membrane. A novel approach to developing new antiviral drugs against the influenza A virus could be to strengthen the above mentioned protective mechanism.

“One advantage of active substances acting on cellular (human) proteins essential for the virus is the fact that the human genome does not constantly change so that active substances should also show long-term efficacy”, as Dr. König explains. Another advantage is that drugs that target cellular proteins may be effective against quite different viruses which utilize the same human protein machinery, of course, without disrupting essential cell functions. And finally, cellular proteins as target structures have the potential to be used to enhance the efficacy of vaccines.

Original publication

Tripathi S, Pohl MO, Zhou Y, Rodriguez-Frandsen A,, Wang G, Stein DA, Moulton HM, DeJesus P, Che J, Mulder LC, Yángüez E, Andenmatten D, Pache L, Manicassamy B, Albrecht RA, Gonzalez MG, Nguyen Q, Brass A, Elledge S, White M, Shapira S, Hacohen N, Karlas A, Meyer TF, Shales M, Gatorano A, Johnson JR, Jang G, Johnson T, Verschueren E, Sanders D, Krogan N, Shaw M, König R#, Stertz S#, García-Sastre A#, Chanda SK# (2015):
Meta- and Orthogonal Integration of Influenza ‘OMICs’ Data Reveals UBR4 as a Critical Regulator of M2 Ion Channel Membrane Trafficking. Cell Host Microbe. 2015 18: 723-735.
# Co-senior authors

The Paul-Ehrlich-Institut, the Federal Institute for Vaccines and Biomedicines, in Langen near Frankfurt/Main is a senior federal authority reporting to the Federal Ministry of Health (Bundesministerium für Gesundheit, BMG). It is responsible for the research, assessment, and marketing authorisation of biomedicines for human use and immunological veterinary medicinal products. Its remit also includes the authorisation of clinical trials and pharmacovigilance, i.e. recording and evaluation of potential adverse effects. Other duties of the institute include official batch control, scientific advice and inspections. In-house experimental research in the field of biomedicines and life science form an indispensable basis for the manifold tasks performed at the institute. The Paul-Ehrlich-Institut, with its roughly 800 members of staff, also has advisory functions nationally (federal government, federal states (Länder)), and internationally (World Health Organisation, European Medicines Agency, European Commission, Council of Europe etc.).

Weitere Informationen:

Publication Abstract
http://www.pei.de/EN/information/journalists-press/press-releases/2015/20-approa... - This press release on the PEI-Website

Dr. Susanne Stöcker | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>