Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Advantage: Youth – Fin Regenerative Capability Abates During Aging

01.07.2015

Regenerative processes are the reason why wounds can heal and injured tissues can regrow. Some flatworms, salamanders and fishes even have the ability to completely rebuild whole bodily parts. In contrast, the regenerative capability of humans is quite limited and decreases upon aging.

Researchers from the Leibniz Institute for Age Research (FLI) in Jena, Germany now found that also in the short-lived killifish Nothobranchius furzeri, the regenerative capability to rebuild its caudal fin heavily lessens in old age.


Turquois killifish is able to fully regenerate injured caudal fins – but only in young age.

[Source: Nils Hartmann / FLI]

Many animals are able to completely rebuild functional, identical and complex bodily parts after injury or loss. Flatworms for example have the astonishing capability to rebuild a complete organism from only one part of their tail or head. Zebrafish can renew their caudal fins, and newts may rebuild whole legs within few months.

However, these are self-healing powers humans can only dream of. Only few tissues and organs in the human body are able to regenerate continuously, as the intestinal mucosa, the blood, the skeletal muscle, the liver or skin. With growing age, these limited capabilities even further diminish. It is in the focus of many current research projects to answer why and how this abatement occurs in age.

Researchers from the Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI) in Jena, Germany now – for the first time – observed the effects of aging on the regenerative capability of turquois killifish (Nothobranchius furzeri) across its whole lifespan. They studied how aging influences the caudal fin regeneration and which cells are responsible for aging-induced alterations of regenerative capacities of the fish. The study results were published in the renowned journal “Aging Cell”.

“To analyze regenerative processes, the rebuilding of caudal fins is one of the most common models”, Prof. Dr. Christoph Englert, group leader at FLI, explains. “For our studies, we work with N. furzeri, which is the most short-lived vertebrate, which can be kept in a laboratory environment. Due to its lifespan of not more than 14 months, we decided to establish N. furzeri as new animal model for biomedical research on aging.” For the present study, cohorts of male fish aged 8, 20, 36, and 50-60 weeks were employed.

Regeneration in older age

“With growing age, we could observe a continuous abatement of the regenerative capability of the animals“, Dr. Nils Hartmann, researcher in Englert’s laboratory at FLI, explains. “While younger fish were able to fully renew their fin within four weeks, very old fish could in the end only rebuild half of it”. Already after three days, these differences in the rates of fin regrowth very statistically significant. “The results highlight the huge regenerative advantage younger fishes have compared to the elderly.”

What we can learn from the fish

In younger fin tissues, a high amount of proliferating cells were present, whereas in older fish, more dying (apoptotic) cells were found. The higher number of proliferating cells in younger fish results in a more active cell division, which could be the reason for the age-dependent regenerative differences.

These findings help to better understand the regenerative processes in vertebrates and to, eventually, answer the question why humans have such a limited regenerative capability. Because: “Although the caudal fin seems to have little in common with human tissues, it consists of many cell types relevant for the human body: bone, neurons, muscles, skin and connective tissue. Of course, research is still in the beginning. But through the establishment of this regeneration model, we will be able to learn more about cells and factors responsible for the abating regeneration in age. With N. furzeri, we are hopefully able to someday explain and improve the regenerative capability of humans”, the researchers sum up.

Publication
Wendler S, Hartmann N, Hoppe B, Englert C. Age-dependent decline in fin regenerative capacity in the short-lived fish Nothobranchius furzeri. Aging Cell 2015. doi: 10.1111/acel.12367.


Background information

The Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI) is the first German research organization dedicated to biomedical aging research since 2004. More than 330 members from over 30 nations explore the molecular mechanisms underlying aging processes and age-associated diseases. For more information, please visit http://www.fli-leibniz.de.

The Leibniz Association connects 89 independent research institutions that range in focus from the natural, engineering and environmental sciences via economics, spatial and social sciences to the humanities. Leibniz Institutes address issues of social, economic and ecological relevance. They conduct knowledge-driven and applied basic research, maintain scientific infrastructure and provide research-based services. The Leibniz Association identifies focus areas for knowledge transfer to policy-makers, academia, business and the public. Leibniz Institutes collaborate intensively with universities – in the form of “WissenschaftsCampi” (thematic partnerships between university and non-university research institutes), for example – as well as with industry and other partners at home and abroad. They are subject to an independent evaluation procedure that is unparalleled in its transparency. Due to the institutes’ importance for the country as a whole, they are funded jointly by the Federation and the Länder, employing some 18,100 individuals, including 9,200 researchers. The entire budget of all the institutes is approximately 1.64 billion EUR. See http://www.leibniz-association.eu for more information.

Weitere Informationen:

http://www.fli-leibniz.de - Website Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI) Jena

Dr. Kerstin Wagner | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>