Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Adhesive Seals Blood Vessels

14.05.2009
Due to inflammations, blood vessels may become leaky: Blood plasma leaks into the tissue which might involve serious complications. Researchers from the University of Würzburg have now developed a kind of molecular adhesive sealing hyperpermeable blood vessels.

Inside, blood vessels are lined with a single layer of cells. On their surface, these cells bear specific adhesive proteins by means of which they stick close to each other. Normally, this ensures a perfect sealing of the blood vessels.

The most important adhesive protein is the so-called VE-cadherin. It can be destabilized due to different pathological conditions, e.g. due to a sepsis when bacteria have penetrated into the bloodstream and spread within the whole body. This infection causes inflammatory processes which involve leaks in the blood vessel lining. Blood plasma leaks which might result in life-threatening organ swellings as well as tissue bleeding.

To date, there is no means to seal hyperpermeable blood vessels. However, this would be very helpful e.g. for treating patients with pulmonary edema or allergy-induced organ swelling.

Small peptides ensure adhesion

Here, researchers from the "Institut für Anatomie und Zellbiologie" (Institute of Anatomy and Cell Biology) of the University of Würzburg succeeded in taking a first step forward: They have developed small peptide molecules which increase adhesion between vital VE-cadherin adhesive proteins. Thus, the vascular lining is stabilized against inflammatory stimuli.

How do the peptide molecules work? They work just like an adhesive: They bridge the adhesive proteins with each other, because they are designed following the example of the structure by means of which the VE-cadherins stick close to each other. They have a crosslinking effect which they deploy as tandem peptides arranged one after the other - similar to a medical strip with two adhesive ends.

Still far away from application in humans

"These results offer new approaches for the treatment of vascular hyperpermeability", says Prof. Detlev Drenckhahn. However, it is still a long way to go until an application in humans is possible, because the current structure of the molecules is not suitable for such an application.

According to Prof. Drenckhahn it is always difficult to apply peptides to humans, because an unexpected immune response is possible. The next step for the researchers from Würzburg now is to find other molecules resembling the peptides in structure and effect.

Publication in the Journal of Cell Science

The leading researchers from Würzburg Wolfgang-Moritz Heupel, Jens Waschke and Detlev Drenckhahn describe their new approach in the current issue of the Journal of Cell Science. They have worked together with the structural biologist Thomas Müller from the Biocenter who has developed the peptide molecules on the computer. The peptide molecules have been tested in different systems together with the chemist Athina Hübner, the medical scientist Nicolas Schlegel and other employees of the "Institut für Anatomie und Zellbiologie" (Institute of Anatomy and Cell Biology).

The efficiency of the novel molecules could be shown for isolated VE-cadherin adhesive proteins as well as in vivo by means of atomic force microscopy (AFM): If the protective "adhesive" is injected into the blood vessels of mice, their vascular lining does not break down when being exposed to an experimentally generated inflammatory stimulus.

"Endothelial barrier stabilization by a cyclic tandem peptide targeting VE-cadherin transinteraction in vitro and in vivo", Wolfgang-Moritz Heupel, Athina Efthymiadis, Nicolas Schlegel, Thomas Müller, Yvonne Baumer, Werner Baumgartner, Detlev Drenckhahn, Jens Waschke; J Cell Sci. 2009 May 15;122(Pt 10):1616-1625, doi: 10.1242/jcs.040212

Further information

Prof. Dr. Detlev Drenckhahn, "Institut für Anatomie und Zellbiologie", University of Würzburg, phone: +49 (0)931 31-2702, drenckhahn@uni-wuerzburg.de

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht A new molecular player involved in T cell activation
07.12.2018 | Tokyo Institute of Technology

nachricht News About a Plant Hormone
07.12.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>