A New Step towards "Computational Experiments"

An international research team has described the first calculations of Raman optical activity (ROA) spectra using coupled-cluster theory – one of the most reliable quantum chemical methods available.

ROA is a valuable tool for the structural characterization of a wide range of molecules, including large biomolecules such as viruses and proteins for which the technique holds a particular prominence. “We have developed the most advanced computer model to-date of the scattering of polarized light from chiral molecules”, says T. Daniel Crawford, researcher at Virginia Tech (USA), who carried out the simulations together with Kenneth Ruud of the University of Tromsø (Norway).

Chirality – or handedness – is a very important property in chemistry. The new results are presented in the journal ChemPhysChem.

A long-term goal of this area of research is to enable laboratory chemists to carry out their own simulations to study compounds ranging from small molecules to pharmaceuticals and viruses. “This will allow them to identify which ‘hand’ of the compound reacts in a desired way –from providing a certain scent to fighting tumors”, Crawford says. He points out that the model developed by him and his Norwegian colleague is capable of providing predictions of many molecular properties that equal –and sometimes exceed– the accuracy of even the best available experiments. Besides describing the fundamental theoretical aspects of the coupled-cluster functions used in the calculation of ROA spectra, Crawford and Ruud have demonstrated the effectiveness of their method through benchmark computations on (S)-methyloxirane –a compound for which experimental gas-phase data are available. Such rare experimental data, which are free of perturbative solvent effects, provide an excellent testing ground for advanced quantum-chemical methods.

According to the researchers, their future work will focus on more systematic comparisons between coupled-cluster ROA spectra and both density functional theory (DFT) and experiment, including more molecular examples. “Ultimately, we and the world's other quantum chemists seek to carry out ‘computational experiments’ that will provide reliable data more quickly, more safely, and with less expense than laboratory analyses”, Crawford adds.

Author: Daniel Crawford, Virginia Polytechnic Institute, Blacksburg (USA), http://www.chem.vt.edu/people/faculty/crawford-daniel/index.html
Title: Coupled-Cluster Calculations of Vibrational Raman Optical Activity Spectra

ChemPhysChem, Permalink to the article: http://dx.doi.org/10.1002/cphc.201100547

Media Contact

Daniel Crawford Angewandte Chemie

More Information:

http://www.wiley.com

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Why getting in touch with our ‘gerbil brain’ could help machines listen better

Macquarie University researchers have debunked a 75-year-old theory about how humans determine where sounds are coming from, and it could unlock the secret to creating a next generation of more…

Attosecond core-level spectroscopy reveals real-time molecular dynamics

Chemical reactions are complex mechanisms. Many different dynamical processes are involved, affecting both the electrons and the nucleus of the present atoms. Very often the strongly coupled electron and nuclear…

Free-forming organelles help plants adapt to climate change

Scientists uncover how plants “see” shades of light, temperature. Plants’ ability to sense light and temperature, and their ability to adapt to climate change, hinges on free-forming structures in their…

Partners & Sponsors