Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new piece to the puzzle sheds light on how UHRF1 regulates gene activity

07.11.2018

Epigenetic changes often play an important role in cancer, because they cause the genetic material to be read incorrectly at certain locations. Genes that are especially critical are those that control the growth and death of cells. Scientists at Helmholtz Zentrum München have now discovered new details about the UHRF1 protein. UHRF1 catalyses particular steps that are required for marking DNA with epigenetic modifications that suppress parts of the genome. As reported in ‘Molecular Cell’, the molecule may serve as a target for drug therapies because it is produced at elevated levels in cancer cells.

All the cells in our body have the same complement of genes yet perform entirely different functions. This is because genes are read differently depending on the type of cell in which they occur.


UHRF1 may serve as a target for drug therapies.

© Helmholtz Zentrum München

Gene activity is regulated not only at the level of the DNA sequence but also at the epigenetic level by a variety of chemical modifications made to DNA and histones. “Histones are proteins that ‘package’ the DNA strands in the nucleus into chromosomes. But they also play an important role in controlling gene expression”, says Prof. Dr. Robert Schneider, Director of the Institute of Functional Epigenetics (IFE) at Helmholtz Zentrum München.

Together with other proteins, DNA molecules and histones form chromatin. This constitutes a chemical method for condensing genetic information within the small space of the cell nucleus. Very little is known about these regulatory processes that are the focus of the research at IFE.

UHRF1: a molecule controls key steps in DNA methylation

Researchers know, however, that the protein UHRF1 (Ubiquitin-like, containing PHD and RING finger domains) plays an important role in the methylation of DNA strands. Methyl tags are chemical modifications to a DNA molecule that do not alter the genetic code, i.e. the sequence of bases of the DNA. However, they affect the activity of genes encoded in the base sequence. Methylation of DNA molecules usually acts to repress gene transcription.

UHRF1 controls DNA methylation by ensuring that an enzyme which attaches methyl groups to DNA can bind to newly formed chromatin. To accomplish this task, UHRF1 must first bind to newly formed chromatin itself and, in a second step, transfer an ubiquitin molecule (a small protein that alters the properties of other proteins) to a histone protein. To this end, UHRF1 uses various protein domains, regions with special three-dimensional structures and functions in the same molecule.

“It was not previously known exactly how this works,” says Dr. Till Bartke, Deputy Director of the IFE, who supervised the study. Together with his colleague Dr. Benjamin Foster (post-doctoral researcher at the IFE), he has applied various methods in a bid to shed light on this ubiquitin-transfer step, including chemical crosslinking of molecules, mass spectroscopic studies and the use of recombinant chromatin molecules that were modified with methyl groups.

“We found that an ubiquitin-like domain (UBL) must be present to transfer ubiquitin molecules”, Bartke says. This is a special structural element involved in rearrangements of UHRF1 after it has bound to chromatin. In collaboration with a research group led by Dr. Sebastian Bultmann at Ludwig-Maximilians University Munich, the researchers were also able to show that the UBL domain is required for the methylation of DNA in cells.

“Our analysis of the enzymatic mechanism of UHRF1 reveals an unexpected function of the UBL domain and defines a new role of this domain in DNA methylation,” the scientist explains. Because other groups have found elevated concentrations of UHRF1 in several cancers, including lung and colorectal cancer, the protein, he believes, is well-suited as a target for future therapies.

Further Information

As German Research Center for Environmental Health, Helmholtz Zentrum München pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes mellitus and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle.

The Helmholtz Zentrum München has about 2,300 staff members and is headquartered in Neuherberg in the north of Munich. Helmholtz Zentrum München is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members. http://www.helmholtz-muenchen.de/en

The Institute of Functional Epigenetics is interested in how genes are packaged within the nucleus of a cell. The focus is on the so-called "histone proteins" on which the DNA strands are wound and that can determine whether a gene can be read or not. In addition, we are examining the connections between common diseases and distortions in DNA packing. We utilize cutting edge methods that enable us to follow changes of these processes even in individual cells. http://www.helmholtz-muenchen.de/ife/index.html

Contact for the media:
Department of Communication, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 2238 - E-mail: presse@helmholtz-muenchen.de

Wissenschaftliche Ansprechpartner:

Dr. Till Bartke, Helmholtz Zentrum München - German Research Center for Environmental Health, Institute of Functional Epigenetics, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 1553, E-mail: till.bartke@helmholtz-muenchen.de

Originalpublikation:

Foster, B. M. et al. (2018): Critical role of the UBL domain in stimulating the E3 ubiquitin ligase activity of UHRF1 toward chromatin. Molecular Cell, DOI: 10.1016/j.molcel.2018.09.028
https://www.cell.com/molecular-cell/fulltext/S1097-2765(18)30799-8

Sonja Opitz | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

More articles from Life Sciences:

nachricht Organisms with small genomes, cells found thriving in hot soils
06.11.2018 | Michigan State University

nachricht Small Genetic Differences Turn Plants into Better Teams
06.11.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

Im Focus: Dissecting a molecular toolbox driving motility and infection

HZI scientists establish how the cytoskeleton is regulated and manipulated

Various bacterial pathogens stimulate their hosts to engulf them during infection processes, allowing the bacteria to gain access to the host cell cytoplasm....

Im Focus: Electronic Highways on the Nanoscale

For the first time, the targeted functionalization of carbon-based nanostructures allows the direct mapping of current paths, thereby paving the way for novel quantum devices

Computers are getting faster and increasingly powerful. However, at the same time computing requires noticeably more energy, which is almost completely...

Im Focus: Biomarker discovered for most common form of heart failure

Cedars-Sinai discovery may aid doctors in diagnosing at-risk patients before symptoms appear

A team led by a Cedars-Sinai physician-scientist has discovered a biomarker--a protein found in the blood--for the most common type of heart failure, a new...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

 
Latest News

A new piece to the puzzle sheds light on how UHRF1 regulates gene activity

07.11.2018 | Life Sciences

New measure for the wellbeing of populations could replace Human Development Index

07.11.2018 | Social Sciences

Researchers discover new gene for hair loss

07.11.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>