Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A milestone in small RNA biology: piRNA biogenesis from start to finish

17.11.2016

Organisms are in a constant battle against viruses, or transposable elements, which invade their genomes. Among their most effective weapons are silencing pathways that use small RNAs to selectively target invading nucleic acids for their destruction. The molecular understanding of these defense systems has revolutionized modern molecular biology, as they are the basis for powerful genome editing and gene silencing methods such as CRISPR/Cas9 or RNA interference. Scientists from the Institute of Molecular Biotechnology in Vienna (IMBA) have now unravelled the precise mechanisms by which germline cells produce a class of small RNAs, called piRNAs, that control transposon silencing in animals.

PIWI-interacting RNAs, or piRNAs for short, are a class of ‘small regulatory RNAs’—tiny pieces of nucleic acid just 22–30 nucleotides in length. They may be small, but with their associated Argonaute proteins, piRNAs have the power to ‘silence’ transposable elements, so called egoistic genes found in the genomes of plants, fungi, and animals. piRNA-guided silencing can act on chromatin to block transposon transcription, or by destroying transposon mRNAs in order to block their translation into proteins.


A melody played by two hands: Two evolutionarily ancient parallel pathways make up the 3’end of piRNAs. This illustration by Beata Mierzwa compares piRNA 3’ end formation to a piece of music where two pathways - involving Zucchini and Nibbler - play simultaneously to generate a diverse pool of piRNAs. The sheet music encodes characteristic nucleotide patters of the emerging piRNAs.

Although scientists understand quite well how piRNAs repress gene expression, until now, it has been much less clear how piRNAs are actually made. In a milestone research paper published in Nature, scientists from the Institute of Molecular Biotechnology in Austria (IMBA) have painstakingly unravelled the sequence of events that generate piRNAs with a defined length and sequence, a central requirement to define the target spectrum of the silencing system.

Mystery of piRNA biogenesis explained
Julius Brennecke, one of the paper’s senior authors, explained:
“We already knew that piRNAs are formed from longer RNA species that are chopped up into pieces by Argonaute proteins or a protein called Zucchini. This forms the 5' ends of so-called pre-piRNAs, which are loaded into Argonaute proteins and subsequently trimmed and modified to yield mature piRNAs. As we had a fairly good understanding of the generation of piRNA 5' ends, our group focused on the 3' ends, a process that was not understood for nearly ten years.”

Using the common fruit fly Drosophila melanogaster, a major genetic model organism, IMBA scientists Rippei Hayashi and Jakob Schnabl—both first authors of the article—revealed that piRNA 3' end formation in fact follows one of two parallel pathways.

“Once biogenesis is initiated, some piRNA 3' ends are actually generated by Zucchini, the endonuclease that is primarily known to generate piRNA 5' ends”, said last author Stefan Ameres. “But Zucchini explains the biogenesis of only a subset of piRNAs. We then discovered that the exonuclease Nibbler is a second key-enzyme that can form piRNA 3' ends and realized that two genetically separated pathways act in parallel in the cell. This was a true deja vu as we also found Nibbler to mature some microRNAs, yet another class of small RNA molecules, during my postdoctoral work.”

Two parallel pathways in tune
Beyond unravelling these pathways, their place of action, and their implications for downstream gene regulatory mechanisms, the team also made some interesting observations that might provide clues as to the evolution of small RNA biogenesis. “The nucleases we’ve identified in this study have homologs in animals ranging from sponges to human. Interestingly, some notable exceptions are apparent. Nematode worms, for example, have lost the Zucchini enzyme, and mosquitos from the Anopheles genus have lost Nibbler. Whether here other piRNA trimming mechanisms exist or whether in these species the two-pathway model is reduced to one, is unclear. Remarkably, upon simultaneous ablation of Zucchini and Nibbler in Drosophila, piRNAs can still be generated, in this case by closely spaced piRNA-guided Argonaute cleavage events. This Argonaute-only pathway might be the ancient piRNA generating system, onto which sophisticated nucleases like Zucchini and Nibbler were added later to enhance efficiency and accuracy of piRNA biogenesis,” concludes Julius Brennecke.

Original publication:
“'Genetic and mechanistic diversity of piRNA 3'-end formation'”, Rippei Hayashi, Jakob Schnabl, Dominik Handler, Fabio Mohn, Stefan L. Ameres & Julius Brennecke, Nature, November 16, 2016; doi: 10.1038/nature20162

Weitere Informationen:

http://de.imba.oeaw.ac.at/index.php?id=516

Mag. Ines Méhu-Blantar | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>