Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A 'frenemy' in Parkinson's disease takes to crowdsourcing

30.09.2014

Protein regulates neuronal communication by self-association

The protein alpha-synuclein is a well-known player in Parkinson's disease and other related neurological conditions, such as dementia with Lewy bodies. Its normal functions, however, have long remained unknown. An enticing mystery, say researchers, who contend that understanding the normal is critical in resolving the abnormal.

Alpha-synuclein typically resides at presynaptic terminals – the communication hubs of neurons where neurotransmitters are released to other neurons. In previous studies, Subhojit Roy, MD, PhD, and colleagues at the University of California, San Diego School of Medicine had reported that alpha-synuclein diminishes neurotransmitter release, suppressing communication among neurons. The findings suggested that alpha-synuclein might be a kind of singular brake, helping to prevent unrestricted firing by neurons. Precisely how, though, was a mystery.

Then Harvard University researchers reported in a recent study that alpha-synuclein self-assembles multiple copies of itself inside neurons, upending an earlier notion that the protein worked alone. And in a new paper, published this month in Current Biology, Roy, a cell biologist and neuropathologist in the departments of Pathology and Neurosciences, and co-authors put two and two together, explaining how these aggregates of alpha-synuclein, known as multimers, might actually function normally inside neurons.

First, they confirmed that alpha-synuclein multimers do in fact congregate at synapses, where they help cluster synaptic vesicles and restrict their mobility. Synaptic vesicles are essentially tiny packages created by neurons and filled with neurotransmitters to be released. By clustering these vesicles at the synapse, alpha-synuclein fundamentally restricts neurotransmission. The effect is not unlike a traffic light – slowing traffic down by bunching cars at street corners to regulate the overall flow.

"In normal doses, alpha-synuclein is not a mechanism to impair communication, but rather to manage it. However it's quite possible that in disease, abnormal elevations of alpha-synuclein levels lead to a heightened suppression of neurotransmission and synaptic toxicity," said Roy.

"Though this is obviously not the only event contributing to overall disease neuropathology, it might be one of the very first triggers, nudging the synapse to a point of no return. As such, it may be a neuronal event of critical therapeutic relevance."

Indeed, Roy noted that alpha-synuclein has become a major target for potential drug therapies attempting to reduce or modify its levels and activity.

###

Co-authors include Lina Wang, Utpal Das and Yong Tang, UCSD; David Scott, Massachusetts Institute of Technology; and Pamela J. McLean, Mayo Clinic-Jacksonville.

Funding support for this research came from National Institutes of Health (grant P50AG005131-project 2) and the UC San Diego Alzheimer's Disease Research Center.

Scott LaFee | Eurek Alert!
Further information:
http://www.ucsd.edu/

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>