Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Grow your own transplant' may be possible for men with type 1 diabetes

13.12.2010
Researchers turn human testes cells into insulin-producing islet cells; diabetic mice were 'cured' for a week

Men with type 1 diabetes may be able to grow their own insulin-producing cells from their testicular tissue, say Georgetown University Medical Center (GUMC) researchers who presented their findings today at the American Society of Cell Biology 50th annual meeting in Philadelphia.

Their laboratory and animal study is a proof of principle that human spermatogonial stem cells (SSCs) extracted from testicular tissue can morph into insulin-secreting beta islet cells normally found in the pancreas. And the researchers say they accomplished this feat without use of any of the extra genes now employed in most labs to turn adult stem cells into a tissue of choice.

"No stem cells, adult or embryonic, have been induced to secrete enough insulin yet to cure diabetes in humans, but we know SSCs have the potential to do what we want them to do, and we know how to improve their yield," says the study's lead investigator, G. Ian Gallicano, Ph.D., an associate professor in the Department of Cell Biology and Director of the Transgenic Core Facility at GUMC.

Given continuing progress, Gallicano says his strategy could provide a unique solution to treatment of individuals with type 1 diabetes (juvenile onset diabetes). Several novel therapies have been tried for these patients, but each has drawbacks. Transplanting islet cells from deceased donors can result in rejection, plus few such donations are available. Researchers have also cured diabetes in mice using induced pluripotent stem (IPS) cells – adult stem cells that have been reprogrammed with other genes to behave like embryonic stem cells – but this technique can produce teratomas, or tumors, in transfected tissue, as well as problems stemming from the external genes used to create IPS cells, Gallicano says.

Instead of using IPS cells, the researchers turned to a readily available source of stem cells, the SSCs that are the early precursors to sperm cells. They retrieved these cells from deceased human organ donors.

Because SSCs already have the genes necessary to become embryonic stem cells, it is not necessary to add any new genes to coax them to morph into these progenitor cells, Gallicano says. "These are male germ cells as well as adult stem cells."

"We found that once you take these cells out of the testes niche, they get confused, and will form all three germ layers within several weeks," he says. "These are true, pluripotent stem cells."

The research team took 1 gram of tissue from human testes and produced about 1 million stem cells in the laboratory. These cells showed many of the biological markers that characterize normal beta islet cells.

They then transplanted those cells into the back of immune deficient diabetic mice, and were able to decrease glucose levels in the mice for about a week – demonstrating the cells were producing enough insulin to reduce hyperglycemia.

While the effect lasted only week, Gallicano says newer research has shown the yield can be substantially increased.

The research was funded in part by the American Diabetes Association, patient contributions to the GUMC Office of Advancement, support from GUMC diabetes specialist Stephen Clement, M.D., and a grant from GUMC.

Co-authors include Anirudh Saraswathula, a student at Thomas Jefferson High School for Science and Technology in Alexandria, Va. GUMC researchers Shenglin Chen Ph.D., Stephen Clement, M.D., Martin Dym, Ph.D., and Asif Zakaria, Ph.D., also contributed to the research. The authors report having no personal financial interests related to the study.

About Georgetown University Medical Center
Georgetown University Medical Center is an internationally recognized academic medical center with a three-part mission of research, teaching and patient care (through MedStar Health). GUMC's mission is carried out with a strong emphasis on public service and a dedication to the Catholic, Jesuit principle of cura personalis -- or "care of the whole person." The Medical Center includes the School of Medicine and the School of Nursing and Health Studies, both nationally ranked, the world-renowned Georgetown Lombardi Comprehensive Cancer Center and the Biomedical Graduate Research Organization (BGRO). In fiscal year 2009-2010, GUMC accounted for 79 percent of Georgetown University's extramural research funding.

Karen Mallet | EurekAlert!
Further information:
http://www.georgetown.edu

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>