Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stingray movement could inspire the next generation of submarines

14.11.2013
The fish's unique way of swimming could improve deep-sea vehicles' agility and fuel efficiency

Stingrays swim through water with such ease that researchers from the University at Buffalo and Harvard University are studying how their movements could be used to design more agile and fuel-efficient unmanned underwater vehicles.


Richard Bottom, left, and Iman Borazjani hope their research on how stingrays swim will lead to the design of new underwater vehicles. (Photo: Douglas Levere)

The vehicles could allow researchers to more efficiently study the mostly unexplored ocean depths, and they could also serve during clean up or rescue efforts.

“Most fish wag their tails to swim. A stingray's swimming is much more unique, like a flag in the wind,” says Richard Bottom, a UB mechanical engineering graduate student participating in the research.

Bottom and Iman Borazjani, UB assistant professor of mechanical and aerospace engineering, set out to investigate the form-function relationship of the stingray — why it looks the way it does and what it gets from moving the way it does.

They will explain their findings at the 66th Annual Meeting of the American Physical Society Division of Fluid Dynamics. Their lecture, “Biofluids: Locomotion III – Flying,” is at 4:45 p.m. on Sunday, Nov. 24, in Pittsburgh, Pa.

The researchers used computational fluid dynamics, which employs algorithms to solve problems that involve fluid flows, to map the flow of water and the vortices around live stingrays.

The study is believed to be the first time the leading-edge vortex, the vortex at the front of an object in motion, has been studied in underwater locomotion, says Borazjani. The leading-edge vortex has been observed in the flight of birds and insects, and is one of the most important thrust enhancement mechanics in insect flight.

The vortices on the waves of the stingrays’ bodies cause favorable pressure fields — low pressure on the front and high pressure on the back — which push the ray forward. Because movement through air and water are similar, understanding vortices are critical.

“By looking at nature, we can learn from it and come up with new designs for cars, planes and submarines,” says Borazjani. “But we’re not just mimicking nature. We want to understand the underlying physics for future use in engineering or central designs.”

Studies have already proven that stingray motion closely resembles the most optimal swimming gait, says Bottom. Much of this is due to the stingray’s unique flat and round shape, which allows them to easily glide through water.

Borazjani and Bottom plan to continue their research and study the differences in movement among several types of rays.

Marcene Robinson
Media Relations Assistant
Tel: 716-645-4595
marcener@buffalo.edu

Marcene Robinson | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Interdisciplinary Research:

nachricht Investigating cell membranes: researchers develop a substance mimicking a vital membrane component
25.05.2018 | Westfälische Wilhelms-Universität Münster

nachricht New approach: Researchers succeed in directly labelling and detecting an important RNA modification
30.04.2018 | Westfälische Wilhelms-Universität Münster

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>