Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Vinland Map shows its true colors; scientists say it’s a confirmed forgery

29.07.2002


For the first time in the controversial saga of the famous Vinland Map, scientists say they have shown with certainty that the supposed relic is actually a 20th-century forgery. The findings are reported in the July 31 print issue of Analytical Chemistry, a peer-reviewed journal of the American Chemical Society, the world’s largest scientific society.

The Vinland Map -- a drawing that suggests Norse explorers charted North America long before Columbus -- has given scientists and historians a fertile platform for debate throughout its contentious history. Several studies have questioned its authenticity, but disagreement about techniques and interpretations has left some adherents to the map’s 15th-century origins unconvinced.

While other evidence has already established the pre-Columbian presence of the Vikings in North America, the map still serves as an important piece of history and has been valued by some at more than $20 million. It resides at the Beinecke Rare Book and Manuscript Library of Yale University.



"The Vinland Map is arguably one of the most important maps in the world," said Robin Clark, D.Sc., Sir William Ramsay Professor of Chemistry at University College London. Clark and Katherine Brown, a doctoral candidate, used Raman microprobe spectroscopy to identify the chemical components in the inks on the Vinland Map.

In this technique, a laser beam is directed at an object; a small portion of the light scatters off the molecules as radiation with different colors. Every material has a unique scattering spectrum that acts as a fingerprint, allowing scientists to identify it.

The ink is made up of two parts: a yellowish line that adheres strongly to the parchment overlaid with a black line that appears to have flaked off.

The yellow line contains anatase -- the least common form of titanium dioxide found in nature. Some scientists have concluded that the map must be of 20th-century origin because anatase could not be synthesized until around 1923. Others have suggested that anatase could have been formed during the medieval production of iron-based inks.

The current study is the first to establish precisely where the anatase is located on the map. The Raman technique allowed the researchers to examine the entire map in place, as opposed to other methods that drew individual samples from the map. "Anatase was detected solely in the ink lines and not elsewhere on the parchment, so [it] must be an integral part of the yellow line," the authors assert in their paper.

Prior to the development of the printing press, manuscripts were generally written in either carbon-based inks or iron gallotannate inks. Erosion of the latter makes the parchment brittle and often leads to brown or yellow staining. "Knowing that such yellowing is a common feature of medieval manuscripts, a clever forger may seek to simulate this degradation by the inclusion of a yellow line in his rendering of the map," the researchers suggested.

The study shows, however, that the black ink is made from carbon, not iron gallotannate, which makes the natural occurrence of yellowing impossible. Also, the map has not grown brittle over the years, as would be expected with an iron gallotannate ink.

"The Raman results provide the first definitive proof that the map itself was drawn after 1923," Clark said. "The results demonstrate the great importance of modern analytical techniques in the study of items in our cultural heritage."

Beverly Hassell | EurekAlert!

More articles from Interdisciplinary Research:

nachricht Investigating cell membranes: researchers develop a substance mimicking a vital membrane component
25.05.2018 | Westfälische Wilhelms-Universität Münster

nachricht New approach: Researchers succeed in directly labelling and detecting an important RNA modification
30.04.2018 | Westfälische Wilhelms-Universität Münster

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>