Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Vinland Map shows its true colors; scientists say it’s a confirmed forgery

29.07.2002


For the first time in the controversial saga of the famous Vinland Map, scientists say they have shown with certainty that the supposed relic is actually a 20th-century forgery. The findings are reported in the July 31 print issue of Analytical Chemistry, a peer-reviewed journal of the American Chemical Society, the world’s largest scientific society.

The Vinland Map -- a drawing that suggests Norse explorers charted North America long before Columbus -- has given scientists and historians a fertile platform for debate throughout its contentious history. Several studies have questioned its authenticity, but disagreement about techniques and interpretations has left some adherents to the map’s 15th-century origins unconvinced.

While other evidence has already established the pre-Columbian presence of the Vikings in North America, the map still serves as an important piece of history and has been valued by some at more than $20 million. It resides at the Beinecke Rare Book and Manuscript Library of Yale University.



"The Vinland Map is arguably one of the most important maps in the world," said Robin Clark, D.Sc., Sir William Ramsay Professor of Chemistry at University College London. Clark and Katherine Brown, a doctoral candidate, used Raman microprobe spectroscopy to identify the chemical components in the inks on the Vinland Map.

In this technique, a laser beam is directed at an object; a small portion of the light scatters off the molecules as radiation with different colors. Every material has a unique scattering spectrum that acts as a fingerprint, allowing scientists to identify it.

The ink is made up of two parts: a yellowish line that adheres strongly to the parchment overlaid with a black line that appears to have flaked off.

The yellow line contains anatase -- the least common form of titanium dioxide found in nature. Some scientists have concluded that the map must be of 20th-century origin because anatase could not be synthesized until around 1923. Others have suggested that anatase could have been formed during the medieval production of iron-based inks.

The current study is the first to establish precisely where the anatase is located on the map. The Raman technique allowed the researchers to examine the entire map in place, as opposed to other methods that drew individual samples from the map. "Anatase was detected solely in the ink lines and not elsewhere on the parchment, so [it] must be an integral part of the yellow line," the authors assert in their paper.

Prior to the development of the printing press, manuscripts were generally written in either carbon-based inks or iron gallotannate inks. Erosion of the latter makes the parchment brittle and often leads to brown or yellow staining. "Knowing that such yellowing is a common feature of medieval manuscripts, a clever forger may seek to simulate this degradation by the inclusion of a yellow line in his rendering of the map," the researchers suggested.

The study shows, however, that the black ink is made from carbon, not iron gallotannate, which makes the natural occurrence of yellowing impossible. Also, the map has not grown brittle over the years, as would be expected with an iron gallotannate ink.

"The Raman results provide the first definitive proof that the map itself was drawn after 1923," Clark said. "The results demonstrate the great importance of modern analytical techniques in the study of items in our cultural heritage."

Beverly Hassell | EurekAlert!

More articles from Interdisciplinary Research:

nachricht A fresh twist in chiral topology
22.06.2020 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Unlocking PNA's superpowers for self-assembling nanostructures
12.06.2020 | College of Engineering, Carnegie Mellon University

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

X-ray scattering shines light on protein folding

10.07.2020 | Life Sciences

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>