Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists shrink particle accelerator

06.10.2015

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio frequency structures. A single accelerator module is just 1.5 centimetres long and one millimetre thick.


Terahertz accelerator modules easily fit into two fingers.

Credit: DESY/Heiner Mueller-Elsner

The terahertz technology holds the promise of miniaturising the entire set-up by at least a factor of 100, as the scientists surrounding DESY's Franz Kärtner from the Center for Free-Electron Laser Science (CFEL) point out.

They are presenting their prototype, that was set up in Kärtner's lab at the Massachusetts Institute of Technology (MIT) in the U.S., in the journal Nature Communications. The authors see numerous applications for terahertz accelerators, in materials science, medicine and particle physics, as well as in building X-ray lasers. CFEL is a cooperation between DESY, the University of Hamburg and the Max Planck Society.

In the electromagnetic spectrum, terahertz radiation lies between infrared radiation and microwaves. Particle accelerators usually rely on electromagnetic radiation from the radio frequency range; DESY's particle accelerator PETRA III, for example, uses a frequency of around 500 megahertz. The wavelength of the terahertz radiation used in this experiment is around one thousand times shorter.

"The advantage is that everything else can be a thousand times smaller too," explains Kärtner, who is also a professor at the University of Hamburg and at MIT, as well as being a member of the Hamburg Centre for Ultrafast Imaging (CUI), one of Germany's Clusters of Excellence.

For their prototype the scientists used a special microstructured accelerator module, specifically tailored to be used with terahertz radiation. The physicists fired fast electrons into the miniature accelerator module using a type of electron gun provided by the group of CFEL Professor Dwayne Miller, Director at the Max Planck Institute for the Structure and Dynamics of Matter and also a member of CUI.

The electrons were then further accelerated by the terahertz radiation fed into the module. This first prototype of a terahertz accelerator was able to increase the energy of the particles by seven kiloelectronvolts (keV).

"This is not a particularly large acceleration, but the experiment demonstrates that the principle does work in practice," explains co-author Arya Fallahi of CFEL, who did the theoretical calculations. "The theory indicates that we should be able to achieve an accelerating gradient of up to one gigavolt per metre."

This is more than ten times what can be achieved with the best conventional accelerator modules available today. Plasma accelerator technology, which is also at an experimental stage right now, promises to produce even higher accelerations, however it also requires significantly more powerful lasers than those needed for terahertz accelerators.

The physicists underline that terahertz technology is of great interest both with regard to future linear accelerators for use in particle physics, and as a means of building compact X-ray lasers and electron sources for use in materials research, as well as medical applications using X-rays and electron radiation.

"The rapid advances we are seeing in terahertz generation with optical methods will enable the future development of terahertz accelerators for these applications," says first author Emilio Nanni of MIT. Over the coming years, the CFEL team in Hamburg plans to build a compact, experimental free-electron X-ray laser (XFEL) on a laboratory scale using terahertz technology. This project is supported by a Synergy Grant of the European Research Council.

So-called free-electron lasers (FELs) generate flashes of laser light by sending high-speed electrons from a particle accelerator down an undulating path, whereby these emit light every time they are deflected. This is the same principle that will be used by the X-ray laser European XFEL, which is currently being built by an international consortium, reaching from the DESY Campus in Hamburg to the neighbouring town of Schenefeld, in Schleswig-Holstein. The entire facility will be more than three kilometres long.

The experimental XFEL using terahertz technology is expected to be less than a metre long. "We expect this sort of device to produce much shorter X-ray pulses lasting less than a femtosecond", says Kärtner. Because the pulses are so short, they reach a comparable peak brightness to those produced by larger facilities, even if there is significant less light in each pulse. "With these very short pulses we are hoping to gain new insights into extremely rapid chemical processes, such as those involved in photosynthesis."

Developing a detailed understanding of photosynthesis would open up the possibility of implementing this efficient process artificially and thus tapping into increasingly efficient solar energy conversion and new pathways for CO2 reduction. Beyond this, researchers are interested in numerous other chemical reactions. As Kärtner points out, "photosynthesis is just one example of many possible catalytic processes we would like to investigate." The compact XFEL can be potentially also used to seed pulses in large scale facilities to enhance the quality of their pulses. Also, certain medical imaging techniques could benefit from the enhanced characteristics of the novel X-ray source.

###

Deutsches Elektronen-Synchrotron DESY is the leading German accelerator centre and one of the leading in the world. DESY is a member of the Helmholtz Association and receives its funding from the German Federal Ministry of Education and Research (BMBF) (90 per cent) and the German federal states of Hamburg and Brandenburg (10 per cent). At its locations in Hamburg and Zeuthen near Berlin, DESY develops, builds and operates large particle accelerators, and uses them to investigate the structure of matter. DESY's combination of photon science and particle physics is unique in Europe.

Reference

„Terahertz-driven linear electron acceleration"; Emilio A. Nanni, Wenqian R. Huang, Kyung-Han Hong, Koustuban Ravi, Arya Fallahi, Gustavo Moriena, R. J. Dwayne Miller & Franz X. Kärtner; Nature Communications, 2015; DOI: 10.1038/NCOMMS9486

Media Contact

Dr. Thomas Zoufal
presse@desy.de
49-408-998-1666

 @desynews

http://www.desy.de 

Dr. Thomas Zoufal | EurekAlert!

More articles from Interdisciplinary Research:

nachricht Stanford researchers create a wireless, battery-free, biodegradable blood flow sensor
09.01.2019 | Stanford University

nachricht Description of rotating molecules made easy
21.12.2018 | Institute of Science and Technology Austria

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>