Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Investigating cell membranes: researchers develop a substance mimicking a vital membrane component

25.05.2018

In an interdisciplinary collaboration, researchers at the University of Münster have developed a method of visualizing an important component of the cell membrane in living cells. Therefore, they synthesized a family of new substances. The study has been published in “Cell Chemical Biology”.

Exchange of material and information at the level of individual cells requires transport and signalling at level of the plasma membrane enclosing the cell. Studying mechanisms at such tiny dimensions presents researchers with enormous challenges – for example, when they want to find out how an important component of the membrane – cholesterol – behaves and is distributed. So far, cholesterol can only be labelled to a very limited extent with fluorescent dyes, which can be visualized under the microscope without damaging the membrane.


A new compound mimicking natural cholesterol in membranes of living cells (here: HeLa cells). The substance is labelled with a fluorescent dye (red).

Copyright: L. Rakers et al./Cell Chem Biol

Researchers at the University of Münster (Germany) have now developed a method which enables them to circumvent these difficulties. They synthesized a new type of compound which has properties similar to those of cholesterol, but which can be labelled with dyes and visualized in living cells. There, the compound realistically mimics the behaviour of natural cholesterol.

“Our new approach offers enormous potential for imaging membrane dynamics in living cells,” says Prof. Volker Gerke, one of the leaders of the study and Coordinator at the Cells-in-Motion Cluster of Excellence. The work is the result of an interdisciplinary study involving organic chemists, biochemists and biophysicists. The study appears in the current issue of the journal “Cell Chemical Biology”.


The detailed story:

Cells in the body are enclosed in a kind of protective envelope – the plasma membrane, which separates the cell from its environment. Cells also contain internal membranes which separate the individual components of the cell from each other and regulate the movement of substances between the different “spaces”. Cholesterol, a fatlike substance, is an important component of membranes ensuring that they work properly.

Synthesis of new compounds

In order to generate substances which behave similarly to natural cholesterol, the research group of organic chemists led by Prof. Frank Glorius first synthesized a series of chemical compounds. As a starting substance they used natural cholesterol, which was transformed into a certain organic salt, an imidazolium salt. “We already knew from previous studies that these salts interact well with biomolecules and are therefore suitable for cellular experiments,” says Frank Glorius, who also led the study.

In order to compare the biophysical properties of the newly synthesized compounds with those of the natural cholesterol, the researchers incorporated the substances to synthetic model membranes consisting of phospholipids (these phospholipids constitute the main component of membranes).

Biochemists and Biophysicists at the Cluster of Excellence in the group of Prof. Dr. Hans-Joachim Galla measured, among other things, how the new substances affected the phase transition temperature of model membranes, and how they changed the fluidity in the phospholipid layer at different temperatures.

“After evaluating the data, we finally settled on three compounds which exhibited very similar properties to those of natural cholesterol,” says Lena Rakers, a PhD student of Organic Chemistry and one of the two first authors of the study.

Experiments in living cells

The researchers selected these compounds in order to examine them in living cellular membranes, thereby studying them in even more complex structures. For this purpose, they used cultures of human epithelial cells – HeLa cells – as well as cells from human blood vessels, HUVEC cells. Due to their structure, the newly synthesized substances fitted well into the cellular membranes. With the aid of surface mass spectrometry, the researchers measured the molecules in the membrane and could show that the compounds behaved in a very similar way to natural cholesterol in living cells, too.

Because of its structure, one of the new substances could be labelled with fluorescent dyes. To this end, the researchers attached an azide group onto the substance. They then linked the dyes to this azide group using click chemistry – an effective method enabling molecular components to be joined on the basis of a few chemical reactions. Finally, the biochemists visualized the substance in living cells using high-resolution confocal microscopy.

In this way, they were able to observe its distribution and dynamic changes. “These analyses also showed that the novel compound behaved analogously to cellular cholesterol,” says David Grill, a PhD student of Biochemistry and the other first author of the study. One great advantage of the new method is that during the entire process the components and the properties of the cellular membrane remained undamaged.

In the future the researchers want to continue developing their method and test the new substances in further cellular studies using a variety of microscopic imaging methods. One of their aims is to use click chemistry to attach fluorescent dyes and other molecules to the new compounds to eventually introduce selective changes in the membrane.


Funding

The study received financial support from the German Research Foundation (DFG), specifically through the Cells-in-Motion Cluster of Excellence and the Collaborative Research Centre 858 (“Synergistic Effects in Chemistry – From Additivity towards Cooperativity”) at Münster University as well as an individual DFG grant.

Original publication:

Rakers L#, Grill D#, Matos A, Wulff S, Wang D, Börgel J, Körsgen M, Arlinghaus HF, Galla HJ*, Gerke V*, Glorius F* (2018): Addressable Cholesterol Analogs for Live Imaging of Cellular Membranes. Cell Chem Biol; DOI: 10.2016/j.chembiol.2018.04.015.

#equal contribution
*Corresponding authors

Weitere Informationen:

https://www.uni-muenster.de/Chemie.oc/glorius/glorius.html Prof. Frank Glorius
https://www.uni-muenster.de/Cells-in-Motion/people/all/gerke-v.php Prof. Volker Gerke

Svenja Ronge | idw - Informationsdienst Wissenschaft

More articles from Interdisciplinary Research:

nachricht How do muscle and tendon connections last a lifetime? Study in the fruit fly Drosophila
04.04.2019 | Westfälische Wilhelms-Universität Münster

nachricht The Internet of Things: TU Graz researchers increase the dependability of smart systems
18.02.2019 | Technische Universität Graz

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>