Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Investigating cell membranes: researchers develop a substance mimicking a vital membrane component

25.05.2018

In an interdisciplinary collaboration, researchers at the University of Münster have developed a method of visualizing an important component of the cell membrane in living cells. Therefore, they synthesized a family of new substances. The study has been published in “Cell Chemical Biology”.

Exchange of material and information at the level of individual cells requires transport and signalling at level of the plasma membrane enclosing the cell. Studying mechanisms at such tiny dimensions presents researchers with enormous challenges – for example, when they want to find out how an important component of the membrane – cholesterol – behaves and is distributed. So far, cholesterol can only be labelled to a very limited extent with fluorescent dyes, which can be visualized under the microscope without damaging the membrane.


A new compound mimicking natural cholesterol in membranes of living cells (here: HeLa cells). The substance is labelled with a fluorescent dye (red).

Copyright: L. Rakers et al./Cell Chem Biol

Researchers at the University of Münster (Germany) have now developed a method which enables them to circumvent these difficulties. They synthesized a new type of compound which has properties similar to those of cholesterol, but which can be labelled with dyes and visualized in living cells. There, the compound realistically mimics the behaviour of natural cholesterol.

“Our new approach offers enormous potential for imaging membrane dynamics in living cells,” says Prof. Volker Gerke, one of the leaders of the study and Coordinator at the Cells-in-Motion Cluster of Excellence. The work is the result of an interdisciplinary study involving organic chemists, biochemists and biophysicists. The study appears in the current issue of the journal “Cell Chemical Biology”.


The detailed story:

Cells in the body are enclosed in a kind of protective envelope – the plasma membrane, which separates the cell from its environment. Cells also contain internal membranes which separate the individual components of the cell from each other and regulate the movement of substances between the different “spaces”. Cholesterol, a fatlike substance, is an important component of membranes ensuring that they work properly.

Synthesis of new compounds

In order to generate substances which behave similarly to natural cholesterol, the research group of organic chemists led by Prof. Frank Glorius first synthesized a series of chemical compounds. As a starting substance they used natural cholesterol, which was transformed into a certain organic salt, an imidazolium salt. “We already knew from previous studies that these salts interact well with biomolecules and are therefore suitable for cellular experiments,” says Frank Glorius, who also led the study.

In order to compare the biophysical properties of the newly synthesized compounds with those of the natural cholesterol, the researchers incorporated the substances to synthetic model membranes consisting of phospholipids (these phospholipids constitute the main component of membranes).

Biochemists and Biophysicists at the Cluster of Excellence in the group of Prof. Dr. Hans-Joachim Galla measured, among other things, how the new substances affected the phase transition temperature of model membranes, and how they changed the fluidity in the phospholipid layer at different temperatures.

“After evaluating the data, we finally settled on three compounds which exhibited very similar properties to those of natural cholesterol,” says Lena Rakers, a PhD student of Organic Chemistry and one of the two first authors of the study.

Experiments in living cells

The researchers selected these compounds in order to examine them in living cellular membranes, thereby studying them in even more complex structures. For this purpose, they used cultures of human epithelial cells – HeLa cells – as well as cells from human blood vessels, HUVEC cells. Due to their structure, the newly synthesized substances fitted well into the cellular membranes. With the aid of surface mass spectrometry, the researchers measured the molecules in the membrane and could show that the compounds behaved in a very similar way to natural cholesterol in living cells, too.

Because of its structure, one of the new substances could be labelled with fluorescent dyes. To this end, the researchers attached an azide group onto the substance. They then linked the dyes to this azide group using click chemistry – an effective method enabling molecular components to be joined on the basis of a few chemical reactions. Finally, the biochemists visualized the substance in living cells using high-resolution confocal microscopy.

In this way, they were able to observe its distribution and dynamic changes. “These analyses also showed that the novel compound behaved analogously to cellular cholesterol,” says David Grill, a PhD student of Biochemistry and the other first author of the study. One great advantage of the new method is that during the entire process the components and the properties of the cellular membrane remained undamaged.

In the future the researchers want to continue developing their method and test the new substances in further cellular studies using a variety of microscopic imaging methods. One of their aims is to use click chemistry to attach fluorescent dyes and other molecules to the new compounds to eventually introduce selective changes in the membrane.


Funding

The study received financial support from the German Research Foundation (DFG), specifically through the Cells-in-Motion Cluster of Excellence and the Collaborative Research Centre 858 (“Synergistic Effects in Chemistry – From Additivity towards Cooperativity”) at Münster University as well as an individual DFG grant.

Original publication:

Rakers L#, Grill D#, Matos A, Wulff S, Wang D, Börgel J, Körsgen M, Arlinghaus HF, Galla HJ*, Gerke V*, Glorius F* (2018): Addressable Cholesterol Analogs for Live Imaging of Cellular Membranes. Cell Chem Biol; DOI: 10.2016/j.chembiol.2018.04.015.

#equal contribution
*Corresponding authors

Weitere Informationen:

https://www.uni-muenster.de/Chemie.oc/glorius/glorius.html Prof. Frank Glorius
https://www.uni-muenster.de/Cells-in-Motion/people/all/gerke-v.php Prof. Volker Gerke

Svenja Ronge | idw - Informationsdienst Wissenschaft

More articles from Interdisciplinary Research:

nachricht Magnetic nanopropellers deliver genetic material to cells
08.05.2020 | Max-Planck-Institut für Intelligente Systeme

nachricht Development of new system for combatting COVID-19 that can be used for other viruses
08.04.2020 | University of Texas Medical Branch at Galveston

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: K-State study reveals asymmetry in spin directions of galaxies

Research also suggests the early universe could have been spinning

An analysis of more than 200,000 spiral galaxies has revealed unexpected links between spin directions of galaxies, and the structure formed by these links...

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

An MRI technique has been developed to improve the detection of tumors

03.06.2020 | Medical Engineering

K-State study reveals asymmetry in spin directions of galaxies

03.06.2020 | Physics and Astronomy

The cascade to criticality

03.06.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>