Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Investigating cell membranes: researchers develop a substance mimicking a vital membrane component

25.05.2018

In an interdisciplinary collaboration, researchers at the University of Münster have developed a method of visualizing an important component of the cell membrane in living cells. Therefore, they synthesized a family of new substances. The study has been published in “Cell Chemical Biology”.

Exchange of material and information at the level of individual cells requires transport and signalling at level of the plasma membrane enclosing the cell. Studying mechanisms at such tiny dimensions presents researchers with enormous challenges – for example, when they want to find out how an important component of the membrane – cholesterol – behaves and is distributed. So far, cholesterol can only be labelled to a very limited extent with fluorescent dyes, which can be visualized under the microscope without damaging the membrane.


A new compound mimicking natural cholesterol in membranes of living cells (here: HeLa cells). The substance is labelled with a fluorescent dye (red).

Copyright: L. Rakers et al./Cell Chem Biol

Researchers at the University of Münster (Germany) have now developed a method which enables them to circumvent these difficulties. They synthesized a new type of compound which has properties similar to those of cholesterol, but which can be labelled with dyes and visualized in living cells. There, the compound realistically mimics the behaviour of natural cholesterol.

“Our new approach offers enormous potential for imaging membrane dynamics in living cells,” says Prof. Volker Gerke, one of the leaders of the study and Coordinator at the Cells-in-Motion Cluster of Excellence. The work is the result of an interdisciplinary study involving organic chemists, biochemists and biophysicists. The study appears in the current issue of the journal “Cell Chemical Biology”.


The detailed story:

Cells in the body are enclosed in a kind of protective envelope – the plasma membrane, which separates the cell from its environment. Cells also contain internal membranes which separate the individual components of the cell from each other and regulate the movement of substances between the different “spaces”. Cholesterol, a fatlike substance, is an important component of membranes ensuring that they work properly.

Synthesis of new compounds

In order to generate substances which behave similarly to natural cholesterol, the research group of organic chemists led by Prof. Frank Glorius first synthesized a series of chemical compounds. As a starting substance they used natural cholesterol, which was transformed into a certain organic salt, an imidazolium salt. “We already knew from previous studies that these salts interact well with biomolecules and are therefore suitable for cellular experiments,” says Frank Glorius, who also led the study.

In order to compare the biophysical properties of the newly synthesized compounds with those of the natural cholesterol, the researchers incorporated the substances to synthetic model membranes consisting of phospholipids (these phospholipids constitute the main component of membranes).

Biochemists and Biophysicists at the Cluster of Excellence in the group of Prof. Dr. Hans-Joachim Galla measured, among other things, how the new substances affected the phase transition temperature of model membranes, and how they changed the fluidity in the phospholipid layer at different temperatures.

“After evaluating the data, we finally settled on three compounds which exhibited very similar properties to those of natural cholesterol,” says Lena Rakers, a PhD student of Organic Chemistry and one of the two first authors of the study.

Experiments in living cells

The researchers selected these compounds in order to examine them in living cellular membranes, thereby studying them in even more complex structures. For this purpose, they used cultures of human epithelial cells – HeLa cells – as well as cells from human blood vessels, HUVEC cells. Due to their structure, the newly synthesized substances fitted well into the cellular membranes. With the aid of surface mass spectrometry, the researchers measured the molecules in the membrane and could show that the compounds behaved in a very similar way to natural cholesterol in living cells, too.

Because of its structure, one of the new substances could be labelled with fluorescent dyes. To this end, the researchers attached an azide group onto the substance. They then linked the dyes to this azide group using click chemistry – an effective method enabling molecular components to be joined on the basis of a few chemical reactions. Finally, the biochemists visualized the substance in living cells using high-resolution confocal microscopy.

In this way, they were able to observe its distribution and dynamic changes. “These analyses also showed that the novel compound behaved analogously to cellular cholesterol,” says David Grill, a PhD student of Biochemistry and the other first author of the study. One great advantage of the new method is that during the entire process the components and the properties of the cellular membrane remained undamaged.

In the future the researchers want to continue developing their method and test the new substances in further cellular studies using a variety of microscopic imaging methods. One of their aims is to use click chemistry to attach fluorescent dyes and other molecules to the new compounds to eventually introduce selective changes in the membrane.


Funding

The study received financial support from the German Research Foundation (DFG), specifically through the Cells-in-Motion Cluster of Excellence and the Collaborative Research Centre 858 (“Synergistic Effects in Chemistry – From Additivity towards Cooperativity”) at Münster University as well as an individual DFG grant.

Original publication:

Rakers L#, Grill D#, Matos A, Wulff S, Wang D, Börgel J, Körsgen M, Arlinghaus HF, Galla HJ*, Gerke V*, Glorius F* (2018): Addressable Cholesterol Analogs for Live Imaging of Cellular Membranes. Cell Chem Biol; DOI: 10.2016/j.chembiol.2018.04.015.

#equal contribution
*Corresponding authors

Weitere Informationen:

https://www.uni-muenster.de/Chemie.oc/glorius/glorius.html Prof. Frank Glorius
https://www.uni-muenster.de/Cells-in-Motion/people/all/gerke-v.php Prof. Volker Gerke

Svenja Ronge | idw - Informationsdienst Wissenschaft

More articles from Interdisciplinary Research:

nachricht A Dream for the Future: “Flying with Green Fuel"
25.07.2018 | Universität Bremen

nachricht New approach: Researchers succeed in directly labelling and detecting an important RNA modification
30.04.2018 | Westfälische Wilhelms-Universität Münster

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

Im Focus: A molecular switch may serve as new target point for cancer and diabetes therapies

If certain signaling cascades are misregulated, diseases like cancer, obesity and diabetes may occur. A mechanism recently discovered by scientists at the Leibniz- Forschungsinstitut für Molekulare Pharmakologie (FMP) in Berlin and at the University of Geneva has a crucial influence on such signaling cascades and may be an important key for the future development of therapies against these diseases. The results of the study have just been published in the prestigious scientific journal 'Molecular Cell'.

Cell growth and cell differentiation as well as the release and efficacy of hormones such as insulin depend on the presence of lipids. Lipids are small...

Im Focus: Touring IPP’s fusion devices per virtual-reality viewer

ASDEX Upgrade and Wendelstein 7-X – as if you were there / 360° view of fusion research

You seem to be standing in the plasma vessel looking around: Where otherwise plasmas with temperatures of several million degrees are being investigated, with...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Ph.D. student develops spinning heat shield for future spacecraft

10.08.2018 | Physics and Astronomy

Investigating global air pollution

10.08.2018 | Life Sciences

The “TRiC” to folding actin

10.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>