Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A ski jacket that actively gets rid of sweat

30.01.2018

To keep the body warm and dry during winter sports, high-performance clothing is a must. The demands on these textiles are high, as a person sweats up to one liter per hour on his upper body alone when skiing. A new technology, co-developed by a team of Empa scientists, helps athletes sweating by actively transporting moisture away from the body and to the outside. This is possible because ultra-thin layers of gold in the fabric are electrified.

Man is a warm-blooded animal. If it gets too hot for him, he can tune down his body temperature. This feat is achieved by an evolutionarily refined "AC system" in our skin: the sweat glands. However, evolution did not yet know anything about winter sports, and so our heat balance is thrown into a spin if we want to protect ourselves from the freezing cold while skiing and at the same time sweat unhindered.


Prototype of the electro-osmotic jacket at the international sports fair ISPO in Munich.

Image: Osmotex

A technology developed at Empa in St. Gallen in cooperation with the Thalwil-based company Osmotex and other industrial partners is designed to keep athletes warm and dry – thanks to “electrical” textiles.
An important component of the HYDRO_BOT technology is a principle that enables plants, for instance, to draw in water from the soil via their roots: osmosis.

With the new type of sportswear, this principle is accelerated even further by applying a voltage of around 1.5 volts. To ensure that liquid is actively transported from the inside to the outside by means of electro-osmosis, a polymer membrane with a thickness of only 20 micrometers is used, which is coated on both sides with a noble metal by means of plasma coating.

This is achieved by using just under 0.2 grams of gold per ski jacket, which has an impact on the price of the membrane. However, gold has proven to be significantly more durable than silver-coated electrodes.

How the jacket works

When an electrical voltage is applied to the membrane, salt ions – and with them the liquid surrounding them – migrate through tiny pores in the membrane to the outside, from where they are attracted electrically, so to speak. For this purpose, the membrane is equipped with a conventional battery, which can be switched on depending on weather and body activity.

“Even without current, liquid passes through the membrane. However, as soon as an electrical voltage is applied, the pumping effect increases significantly”, says Dirk Hegemann from Empa’s Advanced Fibers lab. The membrane can pump out about 10 liters of liquid per square meter and hour by electro-osmosis.

For the final product, though, the electro-osmotic membrane will be integrated into a ski jacket within various functional layers. “Thanks to our new physical and numerical models, we were able to optimize the textile structure of the HYDRO_BOT technology," explains Simon Annaheim from Empa’s Biomimetic Membranes and Textiles lab.

Experiments in the climate chambers at Empa showed that the electro-osmotic principle not only works in aspects of physics but also meets the physiological requirements of the human body. Here, the anatomically shaped sweat manikin SAM simulates how the human body behaves during exercise. SAM moves, heats up and ejects precisely defined quantities of liquid through 125 tiny nozzles. “SAM and the data it provided us with enabled us to objectively analyze the wearing comfort and functionality of HYDRO_BOT clothing," says Annaheim.

World premiere at the ISPO in Munich

Osmotex expects jackets with the HYDRO_BOT technology to be launched on the market for the 2018/19 season. In addition to Empa, Norwegian sportswear manufacturer KJUS and Swiss textile company Schoeller are involved in the further development of the technology. However, a prototype of an electro-osmotic jacket can already be admired at the international sports fair ISPO in Munich from 28 to 31 January 2018, where Osmotex will be presenting it to the public for the first time.

Weitere Informationen:

https://www.empa.ch/web/s604/osmotex-hydrobot

Rainer Klose | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Further reports about: Empa ISPO SAM battery body temperature electrical voltage human body textile tiny pores

More articles from Innovative Products:

nachricht A fashionable chemical and biological threat detector-on-a-ring
12.10.2017 | American Chemical Society

nachricht Healthy Hiking in Smart Socks
22.02.2017 | Technische Universität Chemnitz

All articles from Innovative Products >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Uncovering hidden protein structures

18.06.2019 | Life Sciences

Monitoring biodiversity with sound: how machines can enrich our knowledge

18.06.2019 | Life Sciences

Schizophrenia: Adolescence is the game-changer

18.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>