Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World first demo of labyrinth magnetic-domain-optical Q-switched laser

28.07.2016

A submillimeter-thick film with magnetic microdomains was used to control a Q-switched laser, increasing its pulse power 1,000 times

The "Industry 4.0" concept, first introduced by the German government, has recently extended the scope of compact high-power laser applications to, for instance, laser manufacturing, vehicle engine development, or thruster systems for space exploration.


This photo shows researchers working with the MO Q-switched laser. Left: PhD candidate Ryohei Morimoto. Right: Assistant Professor Taichi Goto.

COPYRIGHT (C) TOYOHASHI UNIVERSITY OF TECHNOLOGY. ALL RIGHTS RESERVED.

However, integration of a controllable Q-switch into compact solid-state lasers has been challenging because of the mechanisms of EO and AO effects. In addition, previous Q-switches needed a large-sized power supply, which prevented downscaling of the entire system.

Now, researchers at Toyohashi University of Technology, Iowa State University, and the Institute for Molecular Science have developed a magneto-optic (MO) Q-switched laser for the first time, using a 190-micron-thick magnetic garnet film with labyrinth-shaped magnetic domains.

They used custom-made coil and circuits to generate the pulsed magnetic field to be applied to the magnetic garnet, and successfully generated optical output with a pulse width of tens of nanoseconds. This is the first demonstration ever of a Q-switched laser driven by magnetic domain motions, and also the first evidence of the possibility of an integrated Q-switched laser.

"The device was two orders of magnitude smaller than other reported controllable Q-switches," commented Associate Professor Taira.

"The most difficult part of realizing MO Q-switching was to combine three different techniques/fields: the preparation of a magnetic material, the fabrication of a high-speed magnetic field switch, and the construction of a laser cavity," explained PhD candidate Ryohei Morimoto.

According to the first author, Assistant Professor Taichi Goto, "there are no previous reports of MO Q-switches using thin garnets. This is surely the first demonstration, and it also becomes an important first step in the development of an integrated high-power laser."

"We enjoy our collaboration and learn from each other," said Professor Mina Mani. "We further hope not only to advance research and create and pursue new challenges, but also to use science and technology to make a better world for all."

In addition, the researchers found a unique biasing technique that uses magnetism to decrease the electric power needed for Q-switching. When a ring-shaped permanent magnet was placed close to the magnetic garnet, they were able to generate the same optical pulse in the MO Q-switched laser using seven times less electric power. This result showed that this Q-switch does not need a large power supply for operation, meaning that drastic downscaling can be expected. The research team would like their future studies to be useful for laser users all around the world and to help in the establishment of new industries.

###

We acknowledge support from the following institutions:

- Japan Society for the Promotion of Science (JSPS) KAKENHI Nos. 26706009, 26600043, 26220902, 25820124, and 15H02240.

- Japan Science and Technology Agency (JST) - Promoting individual research to nurture the seeds of future innovation and organizing unique, innovative network (PRESTO).

Reference:

T. Goto, R. Morimoto, J. W. Pritchard, M. Mina, H. Takagi, Y. Nakamura, P. B. Lim, T. Taira, and M. Inoue, (2016)."Magneto-optical Q-switching using magnetic garnet film with micromagnetic domains," Opt. Express, 24, (16), 17635-17643. DOI: 10.1364/OE.24.017635.

Further information

Toyohashi University of Technology
1-1 Hibarigaoka, Tempaku
Toyohashi, Aichi Prefecture, 441-8580, JAPAN
Inquiries: Committee for Public Relations
E-mail: press@office.tut.ac.jp

Toyohashi University of Technology, which was founded in 1976 as a National University of Japan, is a leading research institute in the fields of mechanical engineering, advanced electronics, information sciences, life sciences, and architecture.

Website: http://www.tut.ac.jp/english/

Media Contact

Ryoji Inada
press@office.tut.ac.jp

Ryoji Inada | EurekAlert!

More articles from Information Technology:

nachricht 'Building up' stretchable electronics to be as multipurpose as your smartphone
14.08.2018 | University of California - San Diego

nachricht New interactive machine learning tool makes car designs more aerodynamic
14.08.2018 | Institute of Science and Technology Austria

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>