Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultra-high-speed optical communications link sets new power efficiency record

13.03.2013
Ultrafast supercomputers that operate at speeds 100 times faster than current systems are now one step closer to reality. A team of IBM researchers working on a U.S. Defense Advanced Research Projects Agency (DARPA)-funded program have found a way to transmit massive amounts of data with unprecedentedly low power consumption.

The team will describe their prototype optical link, which shatters the previous power efficiency record by half at the Optical Fiber Communication Conference and Exposition/National Fiber Optic Engineers Conference (OFC/NFOEC) in Anaheim, Calif. March 17-21.


This shows optical link test chips, including transmitter circuits, laser diodes, photo diode, and receiver circuits.

Credit: Image courtesy IBM

Scientists predict that the supercomputers of the future—so-called "exascale computers"—will enable them to model the global climate, run molecular-level simulations of entire cells, design nanostructures, and more. "We envision machines reaching the exascale mark around 2020, but a great deal of research must be done to make this possible," says Jonathan E. Proesel, a research staff member at the IBM T. J. Watson Research Center in Yorktown Heights, N.Y. To reach that mark, researchers must develop a way to quickly move massive amounts of data within the supercomputer while keeping power consumption in check.

By combining innovative circuits in IBM's 32-nanometer silicon-on-insulator complementary metal-oxide-semiconductor (SOI CMOS) technology with advanced vertical cavity surface emitting lasers (VCSELs) and photodetectors fabricated by Sumitomo Electric Device Innovations USA (formerly Emcore), Proesel and his colleagues created a power-efficient optical communication link operating at 25 gigabits per second using just 24 milliwatts of total wall-plug power, or 1 pJ/bit. "Compared to our previous work, we have increased the speed by 66 percent while cutting the power in half," Proesel says. "We're continuing the push for lower power and higher speed in optical communications. There will always be demand to move more data with less energy, and that's what we're working toward."

Proesel's presentation at OFC/NFOEC, titled, "35-Gb/s VCSEL-Based Optical Link using 32-nm SOI CMOS Circuits" will take place Monday, March 18 at 2 p.m. in the Anaheim Convention Center.

About OFC/NFOEC

For more than 35 years, the Optical Fiber Communication Conference and Exposition/National Fiber Optic Engineers Conference (OFC/NFOEC) has been the premier destination for converging breakthrough research and innovation in telecommunications, optical networking, fiber optics and, recently, datacom and computing. Consistently ranked in the top 200 tradeshows in the United States, and named one of the Fastest Growing Trade Shows in 2012 by TSNN, OFC/NFOEC unites service providers, systems companies, enterprise customers, IT businesses, and component manufacturers, with researchers, engineers, and development teams from around the world. OFC/NFOEC includes dynamic business programming, an exposition of more than 550 companies, and cutting-edge peer-reviewed research that, combined, showcase the trends and pulse of the entire optical communications industry.

OFC/NFOEC is managed by the Optical Society (OSA) and co-sponsored by OSA, the Institute of Electrical and Electronics Engineers/Communications Society (IEEE/ComSoc), and the IEEE Photonics Society. OFC/NFOEC 2013 takes place March 17 – 21 at the Anaheim Convention Center in Anaheim, Calif. For more information, visit http://www.ofcnfoec.org.

Brielle Day | EurekAlert!
Further information:
http://www.osa.org

More articles from Information Technology:

nachricht Quantum bugs, meet your new swatter
20.08.2018 | Rice University

nachricht Metamolds: Molding a mold
20.08.2018 | Institute of Science and Technology Austria

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>