Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Toward molecular computers: First measurement of single-molecule heat transfer

22.07.2019

Heat transfer through a single molecule has been measured for the first time by an international team of researchers led by the University of Michigan.

This could be a step toward molecular computing--building circuits up from molecules rather than carving them out of silicon as a way to max out Moore's Law and make the most powerful conventional computers possible.


The illustration shows the heat flow through a single molecule -- a chain of carbon atoms bridging the room-temperature electrode and the pointed, atomic-scale tip of the heated electrode.

Credit: Longji Cui, Nanomechanics and Nanoscale Transport Labs, Michigan Engineering

Moore's Law began as an observation that the number of transistors in an integrated circuit doubles every two years, doubling the density of processing power.

Molecular computing is widely believed to be Moore's Law's end game, but many obstacles stand in the way, one of which is heat transfer.

"Heat is a problem in molecular computing because the electronic components are essentially strings of atoms bridging two electrodes. As the molecule gets hot, the atoms vibrate very rapidly, and the string can break," said Edgar Meyhofer, U-M professor of mechanical engineering.

Until now, the transfer of heat along these molecules couldn't be measured, let alone controlled. But Meyhofer and Pramod Reddy, also a professor of mechanical engineering at U-M, have led the first experiment observing the rate at which heat flows through a molecular chain. Their team included researchers from Japan, Germany and South Korea.

"While electronic aspects of molecular computing have been studied for the past 15 or 20 years, heat flows have been impossible to study experimentally," Reddy said. "The faster heat can dissipate from molecular junctions, the more reliable future molecular computing devices could be."

Meyhofer and Reddy have been building the capability to do this experiment for nearly a decade. They've developed a heat-measuring device, or calorimeter, that is almost totally isolated from the rest of the room, enabling it to have excellent thermal sensitivity. They heated the calorimeter to about 20 to 40 Celsius degrees above the room temperature.

The calorimeter was equipped with a gold electrode with a nanometer-sized tip, roughly a thousandth the thickness of a human hair. The U-M group and a team from Kookmin University, visiting Ann Arbor from Seoul, South Korea, prepared a room temperature gold electrode with a coating of molecules (chains of carbon atoms).

They brought the two electrodes together until they just touched, which enabled some chains of carbon atoms to attach to the calorimeter's electrode. With the electrodes in contact, heat flowed freely from the calorimeter, as did an electrical current. The researchers then slowly drew the electrodes apart, so that only the chains of carbon atoms connected them.

Over the course of the separation, these chains continued to rip or drop away, one after the other. The team used the amount of electrical current flowing across the electrodes to deduce how many molecules remained. Collaborators at the University of Konstanz in Germany and the Okinawa Institute of Science and Technology Graduate University in Japan had calculated the current expected when just one molecule remained--as well as the expected heat transfer across that molecule.

When a single molecule remained between the electrodes, the team held the electrodes at that separation until it broke away on its own. This caused a sudden, minuscule rise in the temperature of the calorimeter, and from that temperature increase, the team figured out how much heat had been flowing through the single-molecule carbon chain.

They conducted heat flow experiments with carbon chains between two and 10 atoms long, but the length of the chain did not seem to affect the rate at which heat moved through it. The heat transfer rate was about 20 picowatts (20 trillionths of a watt) per degree Celsius of difference between the calorimeter and the electrode held at room temperature.

"In the macroscopic world, for a material like copper or wood, the thermal conductance falls as the length of the material increases. The electrical conductance of metals also follows a similar rule," said Longji Cui, first author and a 2018 U-M Ph.D. graduate, currently a postdoctoral researcher in physics at Rice University.

"However, things are very different at the nanoscale," Cui said. "One extreme case is molecular junctions, in which quantum effects dominate their transport properties. We found that the electrical conductance falls exponentially as the length increases, whereas the thermal conductance is more or less the same."

Theoretical predictions suggest that heat's ease of movement at the nanoscale holds up even as the molecular chains get much longer, 100 nanometers in length or more--roughly 100 times the length of the 10-atom chain tested in this study. The team is now exploring how to investigate whether that is true.

###

This study, published in the journal Nature, was funded by the U.S. Office of Naval Research, Department of Energy, National Science Foundation, Korean National Research Foundation and German Research Foundation. The devices were made in the Lurie Nanofabrication Facility at U-M.

Meyhofer is also a professor of biomedical engineering. Reddy is also a professor of materials science and engineering. Cui will be an assistant professor of mechanical engineering and materials science and engineering at the University of Colorado, Boulder starting in January 2020.

Study abstract: https://www.nature.com/articles/s41586-019-1420-z

Edgar Meyhofer: https://me.engin.umich.edu/people/faculty/edgar-meyhofer

Pramod Reddy: https://me.engin.umich.edu/people/faculty/pramod-sangi-reddy

Longji Cui: https://www.colorado.edu/mechanical/longji-cui

Media Contact

Nicole Casal Moore
ncmoore@umich.edu
734-647-7087

 @umich

http://www.umich.edu/ 

Nicole Casal Moore | EurekAlert!

More articles from Information Technology:

nachricht Multifunctional e-glasses monitor health, protect eyes, control video game
28.05.2020 | American Chemical Society

nachricht Researchers incorporate computer vision and uncertainty into AI for robotic prosthetics
28.05.2020 | North Carolina State University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Restoring vision by gene therapy

Latest scientific findings give hope for people with incurable retinal degeneration

Humans rely dominantly on their eyesight. Losing vision means not being able to read, recognize faces or find objects. Macular degeneration is one of the major...

Im Focus: Small Protein, Big Impact

In meningococci, the RNA-binding protein ProQ plays a major role. Together with RNA molecules, it regulates processes that are important for pathogenic properties of the bacteria.

Meningococci are bacteria that can cause life-threatening meningitis and sepsis. These pathogens use a small protein with a large impact: The RNA-binding...

Im Focus: K-State study reveals asymmetry in spin directions of galaxies

Research also suggests the early universe could have been spinning

An analysis of more than 200,000 spiral galaxies has revealed unexpected links between spin directions of galaxies, and the structure formed by these links...

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

New image of a cancer-related enzyme in action helps explain gene regulation

05.06.2020 | Life Sciences

Silicon 'neurons' may add a new dimension to computer processors

05.06.2020 | Physics and Astronomy

Protecting the Neuronal Architecture

05.06.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>