Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Teaching cars to drive with foresight

29.10.2019

Good drivers anticipate dangerous situations and adjust their driving before things get dicey. Researchers at the University of Bonn now also want to teach this skill to self-driving cars. They will present a corresponding algorithm at the International Conference on Computer Vision which is held at Friday, November 1st, in Seoul. They will also present a data set that they used to train and test their approach. It will make it much easier to develop and improve such processes in the future.

An empty street, a row of parked cars at the side: nothing to indicate that you should be careful. But wait: Isn't there a side street up ahead, half covered by the parked cars?


Single LiDAR scan (left), the superimposed data (right) with descriptions (colors) provided by a human observer and the result of the software (center).

© AG Computer Vision der Universität Bonn

Maybe I better take my foot off the gas - who knows if someone's coming from the side. We constantly encounter situations like these when driving. Interpreting them correctly and drawing the right conclusions requires a lot of experience. In contrast, self-driving cars sometimes behave like a learner driver in his first lesson.

"Our goal is to teach them a more anticipatory driving style," explains computer scientist Prof. Dr. Jürgen Gall. "This would then allow them to react much more quickly to dangerous situations."

Gall chairs the "Computer Vision" working group at the University of Bonn, which, in cooperation with his university colleagues from the Institute of Photogrammetry and the "Autonomous Intelligent Systems" working group, is researching a solution to this problem.

The scientists now present a first step on the way to this goal at the leading symposium of Gall’s discipline, the International Conference on Computer Vision in Seoul. "We have refined an algorithm that completes and interprets so-called LiDAR data," he explains. "This allows the car to anticipate potential hazards at an early stage."

Problem: too little data

LiDAR is a rotating laser that is mounted on the roof of most self-driving cars. The laser beam is reflected by the surroundings. The LiDAR system measures when the reflected light falls on the sensor and uses this time to calculate the distance. "The system detects the distance to around 120,000 points around the vehicle per revolution," says Gall.

The problem with this: The measuring points become "dilute" as the distance increases - the gap between them widens. This is like painting a face on a balloon: When you inflate it, the eyes move further and further apart. Even for a human being it is therefore almost impossible to obtain a correct understanding of the surroundings from a single LiDAR scan (i.e. the distance measurements of a single revolution).

"A few years ago, the University of Karlsruhe (KIT) recorded large amounts of LiDAR data, a total of 43,000 scans," explains Dr. Jens Behley of the Institute of Photogrammetry. "We have now taken sequences from several dozen scans and superimposed them." The data obtained in this way also contain points that the sensor had only recorded when the car had already driven a few dozen yards further down the road. Put simply, they show not only the present, but also the future.

"These superimposed point clouds contain important information such as the geometry of the scene and the spatial dimensions of the objects it contains, which are not available in a single scan," emphasizes Martin Garbade, who is currently doing his doctorate at the Institute of Computer Science.

"Additionally, we have labeled every single point in them, for example: There's a sidewalk, there's a pedestrian and back there's a motorcyclist." The scientists fed their software with a data pair: a single LiDAR scan as input and the associated overlay data including semantic information as desired output. They repeated this process for several thousands of such pairs.

"During this training phase, the algorithm learned to complete and interpret individual scans," explains Prof. Gall. "This meant that it could plausibly add missing measurements and interpret what was seen in the scans."

The scene completion already works relatively well: The process can complete about half of the missing data correctly. The semantic interpretation, i.e. deducing which objects are hidden behind the measuring points, does not work quite as well: Here, the computer achieves a maximum accuracy of 18 percent.

However, the scientists consider this branch of research to still be in its infancy. "Until now, there has simply been a lack of extensive data sets with which to train corresponding artificial intelligence methods," stresses Gall.

"We are closing a gap here with our work. I am optimistic that we will be able to significantly increase the accuracy rate in semantic interpretation in the coming years." He considers 50 percent to be quite realistic, which could have a huge influence on the quality of autonomous driving.

Video: www.youtube.com/watch?time_continue=43&v=c8SPM1O1oro

Project website: http://semantic-kitti.org

Wissenschaftliche Ansprechpartner:

Prof. Dr. Jürgen Gall
Institut für Informatik
Universität Bonn
Tel. +49(0)228/73-69600
E-mail: gall@iai.uni-bonn.de

Originalpublikation:

Behley J., Garbade M., Milioto A., Quenzel J., Behnke S., Stachniss C., and Gall J., SemanticKITTI: A Dataset for Semantic Scene Understanding of LiDAR Sequences. IEEE/CVF International Conference on Computer Vision, Internet: https://arxiv.org/abs/1904.01416

Johannes Seiler | idw - Informationsdienst Wissenschaft

More articles from Information Technology:

nachricht NIST-led team develops tiny low-energy device to rapidly reroute light in computer chips
15.11.2019 | National Institute of Standards and Technology (NIST)

nachricht Fraunhofer Radio Technology becomes part of the worldwide Telecom Infra Project (TIP)
14.11.2019 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

New laser opens up large, underused region of the electromagnetic spectrum

15.11.2019 | Power and Electrical Engineering

NASA sending solar power generator developed at Ben-Gurion U to space station

15.11.2019 | Power and Electrical Engineering

Typhoons and marine eutrophication are probably the missing source of organic nitrogen in ecosystems

15.11.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>