Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Supercomputing improves biomass fuel conversion

02.08.2019

Researchers combine supercomputing with nano-imaging to reveal how to efficiently break down plant biomass and transform it into transportation fuels

Fuels made from agricultural or forestry wastes known as lignocellulosic biomass have long been a champion in the quest to reduce use of fossil fuels. But plant cell walls have some innate defenses that make the process to break them down more difficult and costly than it could be.


Co-solvents THF and water cause lignin to dissociate from itself and cellulose, expanding into a random coil.

Credit: Charles Cai/UCR

In a leap forward that could be a game changer for understanding how plant biomass can be more efficiently broken down, a research team at the University of California, Riverside have joined forces with teams at Oak Ridge National Laboratory and the University of Central Florida to create a chemical roadmap to breach these defenses.

In order to access the energy-rich sugars found in the plant cell walls, researchers have renewed focus on solvating lignin, a complex polymer also found in plant cell walls that acts as a natural shield, blocking both chemical and biological attack. Lignin is particularly effective in preventing commercial enzymes from digesting cellulose, which makes up the bulk of sugars found in biomass.

In the past, different specialized chemicals and pretreatment methods have been used to improve enzyme access to cellulose but were ineffective at removing lignin. The use of strong acids, ionic liquids, ammonia, and sulfite treatments have somewhat improved the digestibility of cellulose, but these methods also leave lignin behind, making cellulose expensive to recover. Other methods have applied co-solvents such as ethanol and acetone solvate to remove lignin, but they require very high reaction temperatures that also cause the remaining sugars to degrade.

As a result, economically viable methods of transforming biomass into biofuels have yet to be realized.

Charles Cai, an assistant research engineer at the Center for Environmental Research and Technology in the Marlan and Rosemary Bourns College of Engineering at UC Riverside, and Abhishek S. Patri, a doctoral student in chemical and environmental engineering, led a team of researchers taking a new direction to focus on identifying highly specialized co-solvents, substances added to a primary solvent to make it more effective, that can facilitate milder temperature solvation and release of lignin from the plant cell walls. This is known as a "lignin-first" approach to breaking down biomass.

The UC Riverside researchers enlisted the research team at Oak Ridge National Laboratory's Center of Molecular Biophysics, led by Jeremy Smith, to help construct a 1.5 million atom molecular simulation to reveal how the co-solvent pair consisting of tetrahydrofuran, or THF, and water are particularly effective at altering the interactions between lignin and cellulose, helping to drive multiple key mechanisms responsible for breaking down biomass.

The team discovered that pretreating plant biomass with THF-water caused lignin globules on the cellulose surface to expand and break away from one another and away from the cellulose fibers. The expanded lignin was also more exposed to catalytic fragmentation by dilute acid. As a result, lignin could be more efficiently depolymerized, solubilized, and transported out of the cell wall at milder treatment conditions.

The nearly complete removal of lignin also allowed the remaining cellulose fibers to be more susceptible to enzyme attack. In fact, after mild THF co-solvent treatment, the enzymes added to the remaining cellulose-rich solids achieved complete hydrolysis to glucose sugars.

Collaborating researchers at the University of Central Florida, led by Laurene Tetard, helped to confirm the observations made from the molecular simulations and enzymatic studies by using powerful lasers and nano-infrared imaging to optically track lignin's rearrangement and removal from the cell wall of micron-thick slices of hardwood.

Finally, Oak Ridge National Laboratory researchers Yunqiao Pu and Arthur Ragauskas showed that lignin extracted from hardwood pretreated with THF co-solvent was significantly depolymerized and contained fewer unwanted reactions than lignin produced from other acidic pretreatment methods.

By putting lignin first, highly functional co-solvents can help to integrate multiple processing steps while allowing both lignin and sugars to be easily recovered as valuable chemical building blocks, making renewable fuel production easier and more cost-effective. The research team hopes that by revealing the synergistic mechanisms of biomass breakdown by co-solvents THF and water, they can inspire others to identify additional multifunctional co-solvent pairs.

###

The paper, "A multifunctional co-solvent pair reveals molecular principles of biomass deconstruction," is published in the Journal of the American Chemical Society. In addition to Cai and Patri, authors include Barmak Mostofian; Yunqiao Pu; Nicholas Ciaffone; Mikhael Soliman; Micholas Dean Smith; Rajeev Kumar; Xiaolin Cheng; Charles E. Wyman; Laurene Tetard; Arthur J. Ragauskas; Jeremy C. Smith; and Loukas Petridis.

Media Contact

Holly Ober
holly.ober@ucr.edu
951-827-5893

 @UCRiverside

http://www.ucr.edu 

Holly Ober | EurekAlert!
Further information:
https://news.ucr.edu/articles/2019/08/01/supercomputing-improves-biomass-fuel-conversion
http://dx.doi.org/10.1021/jacs.8b10242

Further reports about: Riverside Supercomputing biomass biomass fuel cell walls defenses mechanisms plant biomass

More articles from Information Technology:

nachricht Multifunctional e-glasses monitor health, protect eyes, control video game
28.05.2020 | American Chemical Society

nachricht Researchers incorporate computer vision and uncertainty into AI for robotic prosthetics
28.05.2020 | North Carolina State University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Biophysicists reveal how optogenetic tool works

29.05.2020 | Life Sciences

Convenient location of a near-threshold proton-emitting resonance in 11B

29.05.2020 | Physics and Astronomy

Mapping immune cells in brain tumors

29.05.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>