Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart Computers

21.08.2017

Artificial neural networks decode brain activity during performed and imagined movements

Filtering information for search engines, acting as an opponent during a board game or recognizing images: Artificial intelligence has far outpaced human intelligence in certain tasks. Several groups from the Freiburg excellence cluster BrainLinks-BrainTools led by neuroscientist private lecturer Dr. Tonio Ball are showing how ideas from computer science could revolutionize brain research.


In order to achieve better brain signal transmission quality, the researchers apply contact gel.

Photo: Michael Veit

In the scientific journal “Human Brain Mapping“ they illustrate how a self-learning algorithm decodes human brain signals that were measured by an electroencephalogram (EEG). It included performed movements, but also hand and foot movements that were merely thought or an imaginary rotation of objects.

Even though the algorithm was not given any characteristics ahead of time, it works as quickly and precisely as traditional systems that have been created to solve certain tasks based on predetermined brain signal characteristics, which are therefore not appropriate for every situation. The demand for such diverse intersections between man and machine is huge: At the University Hospital Freiburg, for instance, it could be used for early detection of epileptic seizures. It could also be used to improve communication possibilities for severely paralyzed patients or an automatic neurological diagnosis.

“Our software is based on brain-inspired models that have proven to be most helpful to decode various natural signals such as phonetic sounds,” says computer scientist Robin Tibor Schirrmeister. The researcher is using it to rewrite methods that the team has used for decoding EEG data: So-called artificial neural networks are the heart of the current project at BrainLinks-BrainTools.

“The great thing about the program is we needn’t predetermine any characteristics. The information is processed layer for layer, that is in multiple steps with the help of a non-linear function. The system learns to recognize and differentiate between certain behavioral patterns from various movements as it goes along,” explains Schirrmeister. The model is based on the connections between nerve cells in the human body in which electric signals from synapses are directed from cellular protuberances to the cell’s core and back again. “Theories have been in circulation for decades, but it wasn’t until the emergence of today’s computer processing power that the model has become feasible,” comments Schirrmeister.

Customarily, the model’s precision improves with a large number of processing layers. Up to 31 were used during the study, otherwise known as “Deep Learning”. Up until now, it had been problematic to interpret the network’s circuitry after the learning process had been completed. All algorithmic processes take place in the background and are invisible. That is why the researchers developed the software to create cards from which they could understand the decoding decisions.

The researchers can insert new datasets into the system at any time. “Unlike the old method, we are now able to go directly to the raw signals that the EEG records from the brain. Our system is as precise, if not better, than the old one,” says head investigator Tonio Ball, summarizing the study’s research contribution. The technology’s potential has yet to be exhausted – together with his team, the researcher would like to further pursue its development: “Our vision for the future includes self-learning algorithms that can reliably and quickly recognize the user’s various intentions based on their brain signals. In addition, such algorithms could assist neurological diagnoses.”

Original publication
Schirrmeister RT, Springenberg JT, Fiederer LDJ, Glasstetter M, Eggensperger K, Tangermann, M, Hutter F, Burgard W, Ball T; Deep learning with convolutional neural networks for EEG decoding and visualization. 2017 Hum Brain Mapp. DOI: 10.1002/hbm.23730. URL: https://arxiv.org/abs/1703.05051.

BrainLinks-BrainTools
http://www.brainlinks-braintools.uni-freiburg.de

Contact:
Robin Tibor Schirrmeister
Translational Neurotechnology Lab
Cluster of Excellence BrainLinks-BrainTools
University of Freiburg
Tel.: 0761 270-93300
E-Mail: robin.schirrmeister@uniklinik-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm-en/2017/smart-computers

Rudolf-Werner Dreier | idw - Informationsdienst Wissenschaft

More articles from Information Technology:

nachricht Putting food-safety detection in the hands of consumers
15.11.2018 | Massachusetts Institute of Technology

nachricht Next stop Morocco: EU partners test innovative space robotics technologies in the Sahara desert
09.11.2018 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>