Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sensor stickers transform the human body into a multi-touch surface

04.05.2018

They are similar to ultra-thin patches, their shape can be freely chosen, and they work anywhere on the body. With such sensors on the skin, mobile devices like smartphones and smartwatches can be operated more intuitively and discreetly than ever before. Computer scientists at Saarland University have now developed sensors that even laypeople can produce with a little effort. The special feature: the sensors make it possible, for the first time, to capture touches on the body very precisesly, even from multiple fingers. The researchers have successfully tested their prototypes in four different applications.

“The human body offers a large surface that is easy to access, even without eye contact,” Jürgen Steimle, a professor of computer science at Saarland University, explains the researchers' interest in this literal human-computer interface. Yet the scientists’ vision had so far not succeeded, because the necessary sensors could not measure touches precisely enough, nor could they capture them from multiple fingertips simultaneously. Jürgen Steimle and his research group have now developed the appropriate special type of sensor.


Saarbrücken computer scientists have developed novel skin sensors that allow mobile devices to be controlled from any point on the body.

Universität des Saarlandes

The sensor, named Multi-Touch Skin, looks similar in structure to the touch displays that are well known from smartphones. Two electrode layers, each arrayed in rows and colums, when stacked on top of each other, form a kind of coordinate system, at whose intersections the electrical capacitance is constantly measured. This is lowered at the point where fingers touch the sensor, because the fingers conduct electricity and therefore allow the charge to drain away.

These changes are captured at each point, and thus touches from multiple fingers can be detected. In order to find the optimal balance between conductivity, mechanical robustness and flexibility, the researchers evaluated different materials. If, for example, silver is chosen as the conductor, PVC plastic for the insulating material between the electrodes, and PET plastic for the substrate, then the sensor can be printed using a household inkjet printer in less than a minute.

“So that we could really use the sensors on all parts of the body, we had to free them from their rectangular shape. That was an important aspect,” explains Aditya Shekhar Nittala, who is doing his doctoral research in Jürgen Steimle's group. The scientists therefore developed software for designers, so that they can create their own desired sensor shape.

In the computer program, the designer first draws the outer shape of the sensor, then outlines the area within this outer shape that is to be touch-sensitive. A special algorithm then calculates the layout that will optimally cover this defined area with touch-sensitive electrodes. Finally, the sensor is printed.

The usefulness of this new freedom of form is made particularly clear by one of the four test prototypes, each of which the scientists produced with their novel fabrication methods: Since this sensor is similar in form to an ear, it is placed on the back of a test participant‘s right ear. The participant can swipe upward or downward on it, in order to use it as a volume control. Swiping right or left changes the song being played, while touching with a flat finger stops the song.

For the Saarbrücken scientists, Multi-Touch Skin is further proof that research into on-skin interfaces is worthwhile. In the future, they want to focus on providing even more advanced sensor design programs, and to develop sensors that capture multiple sensory modalities. Their work on Multi-Touch Skin was financed through the Starting Grant “Interactive Skin” from the European Research Council (ERC).

The sensor now being presented was developed by Jürgen Steimle together with Aditya Shekhar Nittala, Anusha Withana, and Narjes Pourjafaraian, all members of Steimle's research group. At the international conference “CHI Human Factors in Computing Systems” which took place on the 26th of April in Montreal, Canada, the Saarbrücken researchers presented their methods, which for the first time allow interaction designers to design and produce skin-like multi-touch sensors for the body.

Questions can be directed to:

Professor Dr. Jürgen Steimle
Chair for Human-Computer Interaction
Saarland Informatics Campus E1.7
Saarland University
Tel.: +49 681 302-71080
E-mail: steimle@cs.uni-saarland.de

Editor:

Gordon Bolduan
Science Communication
Competence Center Computer Science Saarland
Saarland Informatics Campus E1.7
E-mail: bolduan@mmci.uni-saarland.de

Weitere Informationen:

https://hci.cs.uni-saarland.de/research/multi-touch-skin
http://www.uni-saarland.de/pressefotos

Friederike Meyer zu Tittingdorf | Universität des Saarlandes

More articles from Information Technology:

nachricht Study suggests buried Internet infrastructure at risk as sea levels rise
18.07.2018 | University of Wisconsin-Madison

nachricht Microscopic trampoline may help create networks of quantum computers
17.07.2018 | University of Colorado at Boulder

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>