Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reversing cause and effect is no trouble for quantum computers

20.07.2018

Modelling data in reverse offers hints for how the arrow of time emerges

Watch a movie backwards and you'll likely get confused - but a quantum computer wouldn't. That's the conclusion of researcher Mile Gu at the Centre for Quantum Technologies (CQT) at the National University of Singapore and Nanyang Technological University and collaborators.


Research published in Physical Review X shows that quantum computers can more easily model the reversal of cause and effect -- like following a movie played backwards -- than classical computers. The finding from researchers in Singapore, the United States and Europe may have implications for explaining how we perceive time.

Credit: Aki Honda/Centre for Quantum Technologies, National University of Singapore

Usage Restrictions: Only to be used in reporting on "Causal asymmetry in a quantum world" Physical Review X 8, 031013 (2018) https://journals.aps.org/prx/abstract/10.1103/PhysRevX.8.031013

In research published 18 July in Physical Review X, the international team show that a quantum computer is less in thrall to the arrow of time than a classical computer. In some cases, it's as if the quantum computer doesn't need to distinguish between cause and effect at all.

The new work is inspired by an influential discovery made almost ten years ago by complexity scientists James Crutchfield and John Mahoney at the University of California, Davis. They showed that many statistical data sequences will have a built-in arrow of time.

An observer who sees the data played from beginning to end, like the frames of a movie, can model what comes next using only a modest amount of memory about what occurred before. An observer who tries to model the system in reverse has a much harder task - potentially needing to track orders of magnitude more information.

This discovery came to be known as 'causal asymmetry'. It seems intuitive. After all, modelling a system when time is running backwards is like trying to infer a cause from an effect. We are used to finding that more difficult than predicting an effect from a cause. In everyday life, understanding what will happen next is easier if you know what just happened, and what happened before that.

However, researchers are always intrigued to discover asymmetries that are linked to time-ordering. This is because the fundamental laws of physics are ambivalent about whether time moves forwards or in reverse.

"When the physics does not impose any direction on time, where does causal asymmetry - the memory overhead needed to reverse cause and effect - come from?" asks Gu.

The first studies of causal asymmetry used models with classical physics to generate predictions. Crutchfield and Mahoney teamed up with Gu and collaborators Jayne Thompson, Andrew Garner and Vlatko Vedral at CQT to find out whether quantum mechanics changes the situation.

They found that it did. Models that use quantum physics, the team prove, can entirely mitigate the memory overhead. A quantum model forced to emulate the process in reverse-time will always outperform a classical model modelling the process in forward-time.

The work has some profound implications. "The most exciting thing for us is the possible connection with the arrow of time," says Thompson, first author on the work. "If causal asymmetry is only found in classical models, it suggests our perception of cause and effect, and thus time, can emerge from enforcing a classical explanation on events in a fundamentally quantum world," she says.

Next the team wants to understand how this connects to other ideas of time. "Every community has their own arrow of time, and everybody wants to explain where they come from," says Vedral. Crutchfield and Mahoney called causal asymmetry an example of time's 'barbed arrow'.

Most iconic is the 'thermodynamic arrow'. It comes from the idea that disorder, or entropy, will always increase - a little here and there, in everything that happens, until the Universe ends as one big, hot mess. While causal asymmetry is not the same as the thermodynamic arrow, they could be interrelated. Classical models that track more information also generate more disorder. "This hints that causal asymmetry can have entropic consequence," says Thompson.

The results may also have practical value. Doing away with the classical overhead for reversing cause and effect could help quantum simulation. "Like being played a movie in reverse time, sometimes we may be required to make sense of things that are presented in an order that is intrinsically difficult to model. In such cases, quantum methods could prove vastly more efficient than their classical counterparts," says Gu.

###

Reference:

"Causal asymmetry in a quantum world"

Physical Review X 8, 031013 (2018)

https://journals.aps.org/prx/abstract/10.1103/PhysRevX.8.031013

This work was supported by the National Research Foundation of Singapore and, in particular, NRF Awards No. NRF-NRFF2016-02, No. NRF-CRP14-2014-02, and No. RF2017-NRF-ANR004 VanQuTe, the John Templeton Foundation Grants No. 52095 and No. 54914, Foundational Questions Institute Grant No. FQXi-RFP-1609, and Physics of the Observer Grant (Observer-Dependent Complexity: The Quantum-Classical Divergence over 'What Is Complex?') No. FQXi-RFP-1614, the Oxford Martin School, the Singapore Ministry of Education Tier 1 RG190/17, and the U.S. Army Research Laboratory and the U.S. Army Research Office under Contracts No. W911NF-13-1-0390, No. W911NF-13-1-0340, and No. W911NF-18-1-0028. Much of the collaborative was also made possible by the "Interdisciplinary Frontiers of Quantum and Complexity Science" workshop held in Singapore, funded by the John Templeton Foundation, the Centre for Quantum Technologies, and the Lee Foundation of Singapore.

Researcher contacts:

Mile Gu
Research Assistant Professor, Centre for Quantum Technologies at the National University of Singapore
Assistant Professor, Nanyang Technological University
cqtmileg@nus.edu.sg
+65 6516 5627

Jayne Thompson
Research Fellow, Centre for Quantum Technologies at the National University of Singapore
cqttjed@nus.edu.sg
+65 65166243

Jenny Hogan | EurekAlert!
Further information:
http://dx.doi.org/10.1103/PhysRevX.8.031013

More articles from Information Technology:

nachricht Quantum bugs, meet your new swatter
20.08.2018 | Rice University

nachricht Metamolds: Molding a mold
20.08.2018 | Institute of Science and Technology Austria

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>