Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

VTT replaces quartz with silicon in timing circuit

23.05.2006


Miniaturised and wireless electronics step in new age

Technical Research Centre of Finland VTT, in co-operation with VTI technologies Oy, has developed a new timer circuit that is one hundred times smaller than the traditional quartz crystal. The substitution of quartz for silicon opens up totally new possibilities for reducing the size of electronic devices and for improving their performance. The device is especially helpful in the realization of wireless electronics. For example, it is possible to install buttons, biometric detectors and sharp clocks into smart cards that are thinner than anything seen before.

A reference of time - a clock - is an integral part of our life, for example, in helping us to synchronize our lives with the surrounding society.



Quite similarly, a reference of time or frequency is needed practically in all electronic devices to allow coherent communication within the device and with the outside world.

For example, in radios and cell phones, the frequency reference enables the reception of exactly the right signal from the fizzling chaos of radio waves.

The central problem of quartz resonators is their large size in comparison with the highly miniaturised integrated circuits. The situation is like having 100 kilometres tall giants serving a single purpose, time, for a city of some million inhabitants.

With size less than one square millimeter the silicon microresonator demonstrated by VTT and VTI enables combining it with integrated circuits in a way not possible with quartz crystals.

Wide applications

The new microresonator foreruns in the way to intelligent sub-millimetre electronics and responds to today’s challenge for further miniaturising and increasing functionality of consumer electronics where radios will replace cables. This cannot be done just by shrinking integrated circuits alone but miniaturisation of supporting components is also required.

Furthermore, the microresonator opens up e.g. entire new ways to develop and implement devices for wireless local area networks like miniature radio receivers. These will find their ways to everyday objects like clothes, shoes, earphones and eye glasses.

Microresonators are also needed in other devices used for wireless communication and data processing. Smart cards, for instance, will become thinner and more intelligent and they do not need any reader. The card may also have a display and biometric identification sensor.

Intelligent electronics will be everywhere; in homes, public spaces, roads, portable equipment, health care, identification and payment.

Manufactured in Finland

Quartz crystal resonators are perhaps the second most important component, right after integrated circuit, in any electrical equipment. The annual world-wide sales of quartz resonators is over a 4 billion units, worth of USD 3 billion (EUR 2.5 billion).

There are already three small start-up companies that have launched their first silicon oscillators. Stability-wise VTT and VTI are the technology leaders.

At first stage, silicon resonators will replace quartz resonators in products where size really matters. But in the long run evolution of quartz technology can’t compete with silicon technology.

VTI Technologies, a leading silicon accelerometer and pressure sensor manufacturer, is reviewing the business potential of silicon resonators. VTI’s sensors are widely applied in automotive, medical and sports applications.

If business partners are found VTI is planning to start manufacturing of silicon resonators in Finland. In this, the company can utilise existing know-how and manufacturing lines. VTI is ready for large volume. Currently the annual sensor production is 23 million units and can be expanded to more than 100 millions.

Sirpa Posti | alfa
Further information:
http://www.vtt.fi

More articles from Information Technology:

nachricht Study suggests buried Internet infrastructure at risk as sea levels rise
18.07.2018 | University of Wisconsin-Madison

nachricht Microscopic trampoline may help create networks of quantum computers
17.07.2018 | University of Colorado at Boulder

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>