Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Self-configuring multifunction mobile terminals

26.08.2004


Software Defined Radios (SDRs) are mobile devices that can be reconfigured over the air. Users could download new services from network operators, and even have voice and email services provided by different networks. The SCOUT project has studied how SDRs will be regulated and marketed.



"From the high level perspective, mobile terminal evolution will drive network evolution," says Markus Dillinger of Siemens AG and SCOUT coordinator. "SDR Mobile terminals will evolve more and more capabilities. You could be connected, simultaneously, to a Wireless LAN network and UMTS or GPRS. I could check my emails whilst receiving phone calls."

The project has considered some of the big questions and started the debate in new areas. These include user, operator and regulator requirements in cellular and ad hoc networks, new business models for the reconfigurable mobile terminal, and procedures for managing the downloaded software on reconfigurable terminals.


"Telecom regulators have an interest in the deregulation of radio spectrum, which in turn could lead to new services and new ways of providing services, and which could drive the EU economy one step further," comments Dillinger."At the moment, frequency bands are allocated according to services, but one might consider refarming spectrum so that, for example, UMTS could operate in GSM frequency bands."

Achieving a coherent European view on frequency spectrum use and deregulation is difficult. Each country has its own issues and regulation policies are markedly different in, say, France, Germany and the UK. Nevertheless, one of the members of the SCOUT consortium was the German Regulator, Regulierungsbehörde für Telekommunikation und Post, which generated a questionnaire directed at manufacturers: what factors are important, what should be controlled by regulators, do regulators have a role to play vis-à-vis SDR? This has opened up the debate to a wider public and put SDR on the agenda.

More than a standard issue

"We’ve also considered so-called adaptive multiphase standards," adds Dillinger. "If you have a mobile terminal that can be reconfigured via the network, why should we have to wait for a fully-matured standard to be drawn up? You could reduce the time to market if a minimal standard was published and, as new parts were agreed, mobile terminals could download upgrades as required."

Agreement on the original GSM standard was relatively quick, because it was a small group of European interests. UMTS has taken longer to become adopted partly because discussions had to take place on a worldwide basis. "The next generation, 4G, may well take even longer unless the approach we take to standards improves. It’s difficult to please everyone and, in practice, not all aspects of the standard [or specification] may be in place within the prescribed discussion period," comments Dillinger.

Cognitive radio is a concept that takes into account the users’ preferences and immediate environment. "The mobile terminal would realise that you don’t want to download large email attachments while you’re in a metro train, and would only download the message headers," says Dillinger. "The terminal could also decide to use a UMTS connection rather than a Wireless LAN connection because it provided a better service or cheaper tariff at the user’s location."

Research shows that one of the most commonly-voiced user preference is the ability to roam across networks. For the SDR, this means not only roaming from one service provider to another, but from one technology to another: Wireless LAN, GSM, GPRS, UMTS, etc. "Roaming would very much be the enabler for SDR flexibility," says Dillinger. "What’s more, if there’s a need, reconfigurability could be used to provide even more services to the end user."

What technology should be used in these SDR mobile terminals? According to Dillinger: "Well-known standards, such as GSM and UMTS, are sufficiently stable and well-understood to have been committed to ASIC [Application Specific Integrated Circuit] early on, the programming of which is usually fixed at the time of manufacture. "But there are other devices, such as DSPs [Digital Signal Processors] and FPLAs [Field-programmable Logic Arrays] that are eminently suited to providing the processing power in an SDR because they can easily be reprogrammed."

The conflict between the classical standards approach and the IETF [Internet Engineering Task Force] still dominates how SDRs will be controlled. "To what extent should SDRs be supported by networks," says Dillinger. "At one extreme, you have UMTS and GSM networks that are controlled by operators, and at the other you have Wireless LAN networks that are privately owned and autonomous. We need to strike a balance that will, ultimately, stimulate economic growth. At the end of the day, however, you have to prove that spectrum deregulation is beneficial."

Contact:

Markus Dillinger
Siemens AG
Gustav-Heinemann Ring 115
D-81730 Munich
Germany
Mobile: +49-172-6953019
Tel: +49-89-63644826
E-mail: markus.dillinger@siemens.com

| CORDIS Wire
Further information:
http://results.cordis.lu/
http://www.siemens.com

More articles from Information Technology:

nachricht First machine learning method capable of accurate extrapolation
13.07.2018 | Institute of Science and Technology Austria

nachricht A step closer to single-atom data storage
13.07.2018 | Ecole Polytechnique Fédérale de Lausanne

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>