Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists help police bust forgers

10.08.2004


Forging wills and bank cheques could now be near impossible thanks to a team of physicists in Rome (Italy). Writing in the latest issue of the Institute of Physics journal, Journal of Optics A, the scientists announce a new technique that can detect forged handwriting better than ever before.

Professor Giuseppe Schirripa Spagnolo, Carla Simonetti and Lorenzo Cozzella from the Università degli Studi “Roma Tre” in Rome, Italy, have devised a forgery detection method that creates a 3D hologram of a piece of handwriting and analyses tiny variations and bumps along its path using two common scientific techniques: virtual reality and image processing.

Until now, detecting forged signatures or handwriting has generally been done by experts who analyse the sequence of individual “strokes” in a piece of handwriting using normal, 2D samples. However, a good forgery can go undetected at the 2D level because it isn’t always easy to determine the exact sequence of strokes.



Schirripa Spagnolo’s team create 3D holograms of the path of a piece of writing, generating an image on a computer that looks like a ditch or furrow. This makes it easy to analyse variations or “bumps” generated by the writer’s pressure on the paper at cross over points, for example the mid-point of the figure eight.

The most common technique used by forgers is tracing, although in real life no two signatures are ever identical. A more sophisticated method is known as the “Freehand Technique” and here the forger copies the general style and characteristics of the handwriting they are trying to copy. However, in both cases it is almost impossible for the forger to reproduce the exact variation of pressure used by the original writer.

Professor Schirripa Spagnolo said: “Using image processing and virtual reality makes it easy to detect the presence of bumps at cross-over points. Finding these bumps allows experts to easily determine the sequence of strokes in a piece of handwriting and the tell tale signs of a forgery or original. Another benefit of this technique is that it doesn’t damage the sample.”

The Rome team used their technique, known as “3D Micro-Profilometry” to analyse hundreds of different handwriting samples made using a variety of different paper types and pens. They have also applied their technique to wills and cheques and successfully detected forgeries in both.

Professor Schirripa Spagnolo said: “We believe this type of 3D micro-profilometry is one of the most promising ways of detecting forged handwriting, and it will be a powerful tool for forensic experts around the world.”

David Reid | alfa
Further information:
http://www.iop.org
http://www.iop.org/EJ/journal/JOptA

More articles from Information Technology:

nachricht New Foldable Drone Flies through Narrow Holes in Rescue Missions
12.12.2018 | Universität Zürich

nachricht NIST's antenna evaluation method could help boost 5G network capacity and cut costs
11.12.2018 | National Institute of Standards and Technology (NIST)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

Live from the ocean research vessel Atlantis

13.12.2018 | Earth Sciences

Stanford researcher deciphers flows that help bacteria feed and organize biofilms

13.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>