Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Turning conventional video coding wisdom on its head

19.05.2008
A major drawback of the latest generation video products and applications has been the complex requirements for coding and decoding signals.

An alternative put forward by European researchers turns the traditional video coding paradigm on its head.

Since digital television services began, there has been an accepted way of encoding and decoding video signals. The encoding process is more complex, and requires a great deal more processing power compared to the decoding process.

A television station transmits its signal from a single location, and highly complex equipment encodes the video content for transmission. At the receiving end are large numbers of viewers with simple aerials and television sets allowing them to decode and watch the broadcast.

Any other way of encoding and decoding would be less practical because the viewers would not be able to afford the expensive equipment needed to decode the signal if the complexity were built into the receiving end.

Video services, such as video on demand and streaming, have followed this paradigm of complex encoders operating with simple decoders. With the switch from analogue to digital broadcasting, new standards and video coding technologies have emerged, but again, these follow the same basic principal.

Something happened in 1970 that set the scene for a rethink. US researchers posited a new mathematical theory requiring a total overhaul of codecs – the device or programs that perform encoding and decoding on a digital data stream or signal.

For years, little was done about these predictions, until around the new millennium when a raft of new video devices started appearing in research laboratories and even on the market. Because they had less memory and battery capacity, these real-life applications, such as wireless video cameras, needed simple encoders and complex decoders.

Entering the picture
Since the year 2000, researchers around the world have been looking into this ‘reversal’, and trying to develop new codecs under the banner of Distributed Video Coding (DVC).

But it was only in 2004 that the first serious DVC research project in Europe, called Discover, was set up by six European universities to look at the problem from a European perspective.

“Getting applications to work was not the problem,” says project coordinator Luis Torres. “For example I can already use my mobile phone for videoconferencing, but the complexity of equipment for encoding to the same quality as a conventional digital television picture was the challenge.”

Despite entering the picture later than the Americans, Discover’s scientists looked at what was state of the art and set about improving on it. Within a few months, they had developed a new codec, a sophisticated software algorithm, which Torres says was already “very competitive” with those developed in the USA.

Improvements were made to the software during the two-year project, and it has been made available on the project website free of charge to the recording community and other interested parties.

Quickly seizing the lead
During the EU-funded project, the partners delved into the performance of DVC theory, and produced a series of technical documents detailing the latest advances and a publicly available benchmark for the international research community to evaluate.

By the end of 2007, Discover was able to exhibit the best rate distortion performance – a measure comparing compression rate with quality – of any DVC codec in the world.

Torres is at pains to point out this advantage still does not make the codex very competitive when compared to the compression performance of current video standards. There is a long way to go before picture quality will be anything like that of television. But the groundwork has been laid for other researchers to develop the codec for commercial use.

“I am quite sure, in the future, new projects will see DVC quality catch up with current mainstream broadcast technology and become indistinguishable from it,” he says.

When this does happen, there are large numbers of existing and planned applications that could benefit from such an advance. The applications are available, but are far from properly optimised.

“With our new techniques, they could become optimal,” Torres says.

These applications include wireless video transmission and wireless surveillance networks providing a high-quality video feed in real time. Medical applications, including tiny cameras transmitting video from inside patients, are also envisaged.

Also in the works is a new multi-view image acquisition standard involving the creation of a 3D effect using several unlinked cameras videoing the same scene from different angles and positions.

Although such advances are still only future concepts, Discover has brought them a lot closer to reality.

Discover received funding from the EU's Sixth Framework Programme for research.

Ahmed ElAmin | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/id/89739

More articles from Information Technology:

nachricht SUTD researchers revolutionize 3D printed products with data-driven design method
23.09.2019 | Singapore University of Technology and Design

nachricht Advanced AI boosts clinical analysis of eye images
19.09.2019 | Universitätsspital Bern

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

 
Latest News

Wire laser material deposition – a smart way to save costs

24.09.2019 | Trade Fair News

On the trail of self-healing processes: Bayreuth biochemists reveal insights into extraordinary regenerative ability

23.09.2019 | Life Sciences

New method for the measurement of nano-structured light fields

23.09.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>