Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robotic minds think alike?

27.03.2008
Most schoolchildren struggle to learn geometry, but they are still able to catch a ball without first calculating its parabola. Why should robots be any different? A team of European researchers have developed an artificial cognitive system that learns from experience and observation rather than relying on predefined rules and models.

Led by Linköping University in Sweden, the researchers in the COSPAL project adopted an innovative approach to making robots recognise, indentify and interact with objects, particularly in random, unforeseen situations.

Traditional robotics relies on having the robots carry out complex calculations, such as measuring the geometry of an object and its expected trajectory if moved. But COSPAL has turned this around, making the robots perform tasks based on their own experiences and observations of humans. This trial and error approach could lead to more autonomous robots and even improve our understanding of the human brain.

“Gösta Granlund, head of the Computer Vision Laboratory at Linköping University, came up with the concept that action precedes perception in learning. That may sound counterintuitive, but it is exactly how humans learn,” explains Michael Felsberg, coordinator of the EU-funded COSPAL.

Children, he notes, are “always testing and trying everything” and by performing random actions – poking this object or touching that one – they come to understand cause and effect and can apply that knowledge in the future. By experimenting, they quickly find out, for example, that a ball rolls and that a hole cannot be grasped. Children also learn from observing adults and copying their actions, gaining greater understanding of the world around them.

Learning like, and from, humans
Applied in the context of an artificial cognitive system (ACS), the approach helps to create robots that learn much as humans do and can learn from humans, allowing them to continue to perform tasks even when their environment changes or when objects they are not pre-programmed to recognise are placed in front of them.

“Most artificial intelligence-based ACS architectures are quite successful in recognising objects based on geometric calculations of visual inputs. Some people argue that humans also perform such calculations to identify something, but I don’t think so. I think humans are just very good at recognising the geometry of objects from experience,” Felsberg says.

The COSPAL team’s ACS would seem to bear that theory out. A robot with no pre-programmed geometric knowledge was able to recognise objects simply from experience, even when its surroundings and the position of the camera through which it obtained its visual information changed.

Getting the right peg in the right hole
A shape-sorting puzzle of the sort used to teach small children was used to test the system. Through trial and error and observation, the robot was able to place cubes in square holes and round pegs in round holes with an accuracy of 2mm and 2 degrees. “It showed that, without knowing geometry, it can solve geometric problems,” Felsberg notes.

“In fact, I observed my 11-month-old son solving the same puzzle and the learning process you could see unfolding with both him and the robot was remarkably similar.”

Another test of the robot’s ability to learn from observation involved the use of a robotic arm that copied the movement of a human arm. With as few as 20 to 60 observations, the robotic arm was able to trace the movement of the human arm through a constrained space, avoiding obstacles on the way. In subsequent trials with the same robot, the learning period was greatly reduced, suggesting that the ACS was indeed drawing on memories of past observations.

In addition, by applying concepts akin to fuzzy logic, the team came up with a new means of making the robot identify corresponding signals and symbols such as colours. Instead of specifying three numbers to represent a red, green and blue component, as used in most digital image processing applications, the team made the system learn colours from pairs of images and corresponding sets of reference colour names, such as red, dark red, blue and dark blue in a representation known as channel coding. Similar to how colours are identified by the human brain with sets of neurons firing selectively to differentiate green from black, for example, channel coding offers a biologically inspired way of representing information.

“As humans, we can use reason to deduce what an object is by a process of elimination, i.e. we know that if something has such and such a property it must be this item, not that one. Though this type of machine reasoning has been used before, we have developed an advanced version for object recognition that uses symbolic and visual information to great effect,” Felsberg says.

Ahmed ElAmin | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/id/89632

More articles from Information Technology:

nachricht Reversing cause and effect is no trouble for quantum computers
20.07.2018 | Centre for Quantum Technologies at the National University of Singapore

nachricht Study suggests buried Internet infrastructure at risk as sea levels rise
18.07.2018 | University of Wisconsin-Madison

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>