Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum computing closer as RMIT drives towards first quantum data bus

18.04.2016

RMIT researchers trialling a quantum processor capable of routing information from different locations have found a pathway towards the quantum data bus

RMIT University researchers have trialled a quantum processor capable of routing quantum information from different locations in a critical breakthrough for quantum computing.


Quantum information is encoded in single particles of light (photons). The perfect state transfer is applied to one photon of an entangled pair, relocating it to a distant location while preserving the delicate quantum information and entanglement.

Credit: RMIT University

The work opens a pathway towards the "quantum data bus", a vital component of future quantum technologies.

The research team from the Quantum Photonics Laboratory at RMIT in Melbourne, Australia, the Institute for Photonics and Nanotechnologies of the CNR in Italy and the South University of Science and Technology of China, have demonstrated for the first time the perfect state transfer of an entangled quantum bit (qubit) on an integrated photonic device.

Quantum Photonics Laboratory Director Dr Alberto Peruzzo said after more than a decade of global research in the specialised area, the RMIT results were highly anticipated.

"The perfect state transfer has emerged as a promising technique for data routing in large-scale quantum computers," Peruzzo said.

"The last 10 years has seen a wealth of theoretical proposals but until now it has never been experimentally realised.

"Our device uses highly optimised quantum tunnelling to relocate qubits between distant sites.

"It's a breakthrough that has the potential to open up quantum computing in the near future."

The difference between standard computing and quantum computing is comparable to solving problems over an eternity compared to a short time.

"Quantum computers promise to solve vital tasks that are currently unmanageable on today's standard computers and the need to delve deeper in this area has motivated a worldwide scientific and engineering effort to develop quantum technologies," Peruzzo said.

"It could make the critical difference for discovering new drugs, developing a perfectly secure quantum Internet and even improving facial recognition.''

Peruzzo said a key requirement for any information technology, along with processors and memories, is the ability to relocate data between locations.

Full scale quantum computers will contain millions, if not billions, of quantum bits (qubits) all interconnected, to achieve computational power undreamed of today.

While today's microprocessors use data buses that route single bits of information, transferring quantum information is a far greater challenge due to the intrinsic fragility of quantum states.

"Great progress has been made in the past decade, increasing the power and complexity of quantum processors," Peruzzo said.

Robert Chapman, an RMIT PhD student working on the experiment, said the protocol they developed could be implemented in large scale quantum computing architectures, where interconnection between qubits will be essential.

"We experimentally relocate qubits, encoded in single particles of light, between distant locations," Chapman said.

"During the protocol, the fragile quantum state is maintained and, critically, entanglement is preserved, which is key for quantum computing."

The research, Experimental Perfect State Transfer of an Entangled Photonic Qubit, will be published in Nature Communications on April 18.

Media Contact

Dr. Alberto Peruzzo
alberto.peruzzo@rmit.edu.au
61-410-790-860

 @RMIT

http://www.rmit.edu.au 

Dr. Alberto Peruzzo | EurekAlert!

More articles from Information Technology:

nachricht Study suggests buried Internet infrastructure at risk as sea levels rise
18.07.2018 | University of Wisconsin-Madison

nachricht Microscopic trampoline may help create networks of quantum computers
17.07.2018 | University of Colorado at Boulder

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>