Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Maritime Radar Systems for Increased Safety on the High Seas

24.08.2018

When a person goes overboard, finding her or him quickly is crucial in order to have a chance of rescuing the shipwrecked person. With the SEERAD project, Fraunhofer FHR is joining forces with FH Aachen and Raytheon Anschütz GmbH to develop a new sea rescue radar that is not only capable of reliably locating individual persons or small boats over long distances but also cheaper than the current systems. With this system, small transponders located in life jackets, for instance, will reflect the signals of future maritime radars, which then receive these signals using an extension module. The scientists will present SEERAD SMM trade fair in Hamburg (hall B6, booth 319) from Sept. 4-7, 2018.

Especially the high costs of commercially available radio and position finding systems, amounting to more than 300 euros per person, have prevented these systems from gaining widespread acceptance. Instead of being carried by each crew member, individual devices that can be thrown after a man overboard are spread out across the ship.


Next generation of maritime radars: The harmonic radar SEERAD is designed to detect tags in life jackets in the future to reliably locate shipwrecked persons

Fraunhofer FHR


Fraunhofer FHR’s electronically controlled array antennas will provide for improved detection accuracy of future navigation radars

Fraunhofer FHR

This leads to one requirement: The accident must be noticed immediately. And even then, reaction times, long breaking and turnaround distances, and the different drifts of people and rescue devices can make it impossible to find the missing person. This difficulty increases on large container vessels with small crews, where missing persons are often only noticed when it is far too late, for example during shift changes or meals.

With the SEERAD project, which is funded by the German Federal Ministry of Education and Research (BMBF), Fraunhofer FHR, FH Aachen, and Raytheon Anschütz GmbH are developing a sea rescue system based on harmonic radar. With conventional maritime radars, it can be difficult or even impossible to detect small objects at sea in increasing swells because their reflections can barely be distinguished from the uneven surface of the water.

For this reason, the project partners are counting on transponders the size of a bank card (tags) which – integrated into life jackets, safety devices, or water sports equipment – return the signal of the maritime radar with twice its frequency. An extension of future maritime radars with a harmonic radar module that sends signals in the S-band and also receives them with twice the frequency in the C-band is capable of clearly registering these reflected signals to reliably locate a person who has fallen into the water.

The system’s range will reach up to one kilometer using passive reflectors only (without battery) and up to significantly more than ten kilometers using active transponders powered by a water-activated battery. These tags can be produced at prices of less than ten euros per piece. The tag’s compact size and its low price will allow for large-scale use, with each person on board being able to carry such a tag at all times. Thus, the radar system has the potential to become a widespread sea rescue system.

Fraunhofer FHR will exhibit SEERAD at the booth it shares with Fraunhofer Transport Alliance (hall B6, booth 319) at the SMM in Hamburg, Germany, from September 4 - 7, 2018. There, they will also present their work on a new maritime radar with an electronically controlled array antenna, which operates in the S band as well.

This radar system will be capable of accurately identifying and tracking a larger number of objects with smaller dimensions than the current mechanically rotating antennas, while also being significantly more robust. Besides the standard navigation tasks, the radar can also be used in fields such as the surveillance of port facilities, coastal areas, and river sections to make navigation safer.

As one of Europe’s leading research institutes in its field, the Fraunhofer Institute for High Frequency Physics and Radar Techniques FHR conducts extensive research in the area of high frequency and radar technology. Its core research focuses on sensors for precise distance regulation and positioning as well as imaging systems. The applications range from systems for reconnaissance, surveillance, and protection to real-time capable sensors for traffic and navigation as well as quality assurance and non-destructive testing.

Wissenschaftliche Ansprechpartner:

Dr.-Ing. Thomas Bertuch | Teamleader Antennas and Frontend Technology | Phone +49 228 9435-560 | thomas.bertuch@fhr.fraunhofer.de
Dr.-Ing. Andreas Danklmayer | Speaker Business Unit Traffic | Phone +49 228 9435-582 | andreas.danklmayer@fhr.fraunhofer.de Fraunhofer Institute for High Frequency Physics and Radar Techniques FHR | Fraunhoferstraße 20 | 53343 Wachtberg, Germany | www.fhr.fraunhofer.de

Weitere Informationen:

https://www.fhr.fraunhofer.de/en/press-media/press-releases/SEERAD_SMM_2018_EN.h... Press Release and images in printable quality

Jens Fiege | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

Further reports about: FHR Frequency Hochfrequenzphysik Radar physics radar system transponders

More articles from Information Technology:

nachricht AI finds 2D materials in the blink of an eye
02.04.2020 | Institute of Industrial Science, The University of Tokyo

nachricht FaceHaptics – Simulation for all senses in VR
02.04.2020 | Hochschule Bonn-Rhein-Sieg

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Stem Cells and Nerves Interact in Tissue Regeneration and Cancer Progression

Researchers at the University of Zurich show that different stem cell populations are innervated in distinct ways. Innervation may therefore be crucial for proper tissue regeneration. They also demonstrate that cancer stem cells likewise establish contacts with nerves. Targeting tumour innervation could thus lead to new cancer therapies.

Stem cells can generate a variety of specific tissues and are increasingly used for clinical applications such as the replacement of bone or cartilage....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

 
Latest News

Scientists see energy gap modulations in a cuprate superconductor

02.04.2020 | Physics and Astronomy

AI finds 2D materials in the blink of an eye

02.04.2020 | Information Technology

New 3D cultured cells mimic the progress of NASH

02.04.2020 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>