Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Georgia Tech Turns iPhone Into spiPhone

19.10.2011
It’s a pattern that no doubt repeats itself daily in hundreds of millions of offices around the world: People sit down, turn on their computers, set their mobile phones on their desks and begin to work. What if a hacker could use that phone to track what the person was typing on the keyboard just inches away?

A research team at Georgia Tech has discovered how to do exactly that, using a smartphone accelerometer—the internal device that detects when and how the phone is tilted—to sense keyboard vibrations and decipher complete sentences with up to 80 percent accuracy. The procedure is not easy, they say, but is definitely possible with the latest generations of smartphones.

“We first tried our experiments with an iPhone 3GS, and the results were difficult to read,” said Patrick Traynor, assistant professor in Georgia Tech’s School of Computer Science. “But then we tried an iPhone 4, which has an added gyroscope to clean up the accelerometer noise, and the results were much better. We believe that most smartphones made in the past two years are sophisticated enough to launch this attack.”

Previously, Traynor said, researchers have accomplished similar results using microphones, but a microphone is a much more sensitive instrument than an accelerometer. A typical smartphone’s microphone samples vibration roughly 44,000 times per second, while even newer phones’ accelerometers sample just 100 times per second—two full orders of magnitude less often. Plus, manufacturers have installed security around a phone’s microphone; the phone’s operating system is programmed to ask users whether to give new applications access to most built-in sensors, including the microphone. Accelerometers typically are not protected in this way.

The technique works through probability and by detecting pairs of keystrokes, rather than individual keys (which still is too difficult to accomplish reliably, Traynor said). It models “keyboard events” in pairs, then determines whether the pair of keys pressed is on the left versus right side of the keyboard, and whether they are close together or far apart. After the system has determined these characteristics for each pair of keys depressed, it compares the results against a preloaded dictionary, each word of which has been broken down along similar measurements (i.e., are the letters left/right, near/far on a standard QWERTY keyboard). Finally, the technique only works reliably on words of three or more letters.

For example, take the word “canoe,” which when typed breaks down into four keystroke pairs: “C-A, A-N, N-O and O-E.” Those pairs then translate into the detection system’s code as follows: Left-Left-Near, Left-Right-Far, Right-Right-Far and Right-Left-Far, or LLN-LRF-RRF-RLF. This code is then compared to the preloaded dictionary and yields “canoe” as the statistically probable typed word. Working with dictionaries comprising about 58,000 words, the system reached word-recovery rates as high as 80 percent.

“The way we see this attack working is that you, the phone’s owner, would request or be asked to download an innocuous-looking application, which doesn’t ask you for the use of any suspicious phone sensors,” said Henry Carter, a PhD student in computer science and one of the study’s co-authors. “Then the keyboard-detection malware is turned on, and the next time you place your phone next to the keyboard and start typing, it starts listening.”

Mitigation strategies for this vulnerability are pretty simple and straightforward, Traynor said. First, since the study found an effective range of just three inches from a keyboard, phone users can simply leave their phones in their purses or pockets, or just move them further away from the keyboard. But a fix that puts less onus on users is to add a layer of security for phone accelerometers.

“The sampling rate for accelerometers is already pretty low, and if you cut it in half, you start to approach theoretical limitations that prevent eavesdropping. The malware simply does not have the data to work with,” Traynor said. “But most phone applications can still function even with that lower accelerometer rate. So manufacturers could set that as the default rate, and if someone downloads an application like a game that needs the higher sampling rate, that would prompt a permission question to the user to reset the accelerometer.”

In the meantime, Traynor said, users shouldn’t be paranoid that hackers are tracking their keystrokes through their iPhones.

“The likelihood of someone falling victim to an attack like this right now is pretty low,” he said. “This was really hard to do. But could people do it if they really wanted to? We think yes.”

The finding is reported in the paper, “(sp)iPhone: Decoding Vibrations From Nearby Keyboards Using Mobile Phone Accelerometers,” and will be presented Thursday, Oct. 20, at the 18th ACM Conference on Computer and Communications Security in Chicago. In addition to Carter, Traynor’s coauthors include Georgia Tech graduate student Arunabh Verman and Philip Marquardt of the MIT Lincoln Laboratory.

About the Georgia Tech College of Computing

The Georgia Tech College of Computing is a national leader in the creation of real-world computing breakthroughs that drive social and scientific progress. With its graduate program ranked 10th nationally by U.S. News and World Report, the College’s unconventional approach to education is defining the new face of computing by expanding the horizons of traditional computer science students through interdisciplinary collaboration and a focus on human-centered solutions. For more information about the Georgia Tech College of Computing, its academic divisions and research centers, please visit http://www.cc.gatech.edu.

Contact
Michael Terrazas
Assistant Director of Communications
College of Computing at Georgia Tech
mterraza@cc.gatech.edu

Michael Terrazas | EurekAlert!
Further information:
http://www.cc.gatech.edu

More articles from Information Technology:

nachricht To tune up your quantum computer, better call an AI mechanic
01.04.2020 | National Institute of Standards and Technology (NIST)

nachricht Tiny optical cavity could make quantum networks possible
31.03.2020 | California Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Stem Cells and Nerves Interact in Tissue Regeneration and Cancer Progression

Researchers at the University of Zurich show that different stem cell populations are innervated in distinct ways. Innervation may therefore be crucial for proper tissue regeneration. They also demonstrate that cancer stem cells likewise establish contacts with nerves. Targeting tumour innervation could thus lead to new cancer therapies.

Stem cells can generate a variety of specific tissues and are increasingly used for clinical applications such as the replacement of bone or cartilage....

Im Focus: Artificial solid fog material creates pleasant laser light

An international research team led by Kiel University develops an extremely porous material made of "white graphene" for new laser light applications

With a porosity of 99.99 %, it consists practically only of air, making it one of the lightest materials in the world: Aerobornitride is the name of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

MOC2020: Fraunhofer IOF organises international micro-optics conference in Jena

03.03.2020 | Event News

 
Latest News

Extreme high-frequency signals enable terabits-per-second data links

01.04.2020 | Physics and Astronomy

The architecture of a 'shape-shifting' norovirus

01.04.2020 | Life Sciences

Hubble finds best evidence for elusive mid-size black hole

01.04.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>