Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Data analysis optimizes cyber-physical systems in telecommunications and building automation

18.01.2017

Modern infrastructures for telecommunication or building automation are complex systems. They consist, for example, of software components, of electronic elements and of sensors, which often communicate with each other over the Internet. In such cyber-physical systems (CPS) large quantities of data are generated. The analysis of these data volumes – online and offline – represents a scientific challenge. In the “Flex4Apps” project, the aim is to use data analysis to better understand the processes inside CPS, to make the systems more error-tolerant and reliable and to provide new services.

“The German contribution in the international consortium focuses on data analysis”, says Prof. Dr. Jochen Garcke, Head of Department “Numerical Data-Based Prediction” at the Fraunhofer Institute for Algorithms and Scientific Computing SCAI. Based on the data collected in the CPS, Garcke investigates connections between monitoring data sets and observable anomalies with the aim of identifying suitable parameters for the description of the system states of CPS. In addition, Garcke and his group develop and improve methods for accelerating data analysis.


Project "Flex4Apps"

© Fraunhofer SCAI

The aim of “Flex4Apps” is to improve the utilization possibilities of CPS, taking into account the entire data processing chain through comprehensive solutions. The use of cloud resources and cross-domain data analysis tools will create a framework for system monitoring. This can be described as follows:

The individual components of a CPS log every detail of their state to the split second. The analysis of this wealth of data is, however, difficult to achieve by human beings, since there is a lack of preprocessing tools that divide the log files into critical and uncritical messages. An analysis is therefore often only carried out in the event of an error.

With “Flex4Apps” it becomes possible to discover the complete state of the system from the interrelations of the collected data and thus to be able to warn of an error and to detect defects that have not been observed so far due to missing error messages. The creation of domain-specific tools, which have to be adapted continuously to the changes of the system, is no longer necessary.

The interaction of these analysis and control tools is put to the proof using application examples from the practical experience of the project partners.

The Fraunhofer Institute SCAI is also involved in the project VAVID in the Big Data program sponsored by the German Federal Ministry of Education and Research (BMBF). In this project, data from the condition monitoring of wind energy installations are investigated.

The practical experiences gained by SCAI and the project partners in industry and the research community are transferred into “Flex4Apps”. In particular, mathematical relationships between the analysis of time series data occuring during the condition monitoring of wind energy systems and the time-dependent data from building automation, which are subject of “Flex4Apps”, are to be investigated.

The following industrial partners are part of the German “Flex4Apps” consortium:

• NXP Semiconductors Germany GmbH, Hamburg,
• Nokia, Nuremberg,
• T-Systems Multimedia Solutions GmbH, Dresden,
• Provedo Automation GmbH, Leipzig,
• Genode Labs, Dresden,
• HiConnect GmbH, Mittweida, as well as the
• Fraunhofer Society for the Advancement of Applied Research, represented by the Fraunhofer Institute IIS, Division EAS in Dresden, and Fraunhofer Institute SCAI in Sankt Augustin.

The contact person for the project as a whole and contact person for Germany is Johannes Berg from NXP, Hamburg.

The German part of the project “Flex4Apps” is funded by the German Federal Ministry of Education and Research (BMBF) through the cluster ITEA 3 of the European research initiative EUREKA. The BMBF finances the project with a subsidy sum of 2.73 million euros.

Weitere Informationen:

https://www.scai.fraunhofer.de/en/press-releases/news-04-01-2017.html

Michael Krapp | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

More articles from Information Technology:

nachricht Reversing cause and effect is no trouble for quantum computers
20.07.2018 | Centre for Quantum Technologies at the National University of Singapore

nachricht Study suggests buried Internet infrastructure at risk as sea levels rise
18.07.2018 | University of Wisconsin-Madison

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>