Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Saying ‘Cheese’ for More Effective Border Security

27.11.2008
Facial recognition systems perform some very challenging tasks such as checking an individual’s photo against a database of known or suspected criminals.

The task can become nearly impossible when the systems acquire poor facial images—a situation that occurs all too often in real-world environments.

Now, researchers at the National Institute of Standards and Technology (NIST) have found that several simple steps can significantly improve the quality of facial images that are acquired at border entry points such as airports and seaports.*

Better yet, the NIST recommendations for improving facial images can be implemented relatively easily with existing facial recognition technology.

Travelers entering the United States have their pictures taken and their fingerprints collected digitally as part of the US-VISIT program implemented by the Department of Homeland Security (DHS). US-VISIT and NIST work together on an ongoing basis to improve processes and technology. A 2007 NIST study of facial images collected at border entry points, however, found that the captured facial images were not as clear and useful for automated recognition as they could be.

In usability and human factors research performed for US-VISIT as part of a large joint effort to improve facial recognition technology, NIST’s Mary Theofanos and her colleagues sought simple ways of obtaining better facial images in often hectic real-world conditions without having to deploy new technology. The NIST researchers first visited and observed a DHS border entry point at Dulles Airport in the Washington, D.C. area to see the facial-image capturing process.

As a result of these observations, the researchers identified and shared with US-VISIT a number of steps to take for acquiring better facial images. For example, the report recommends that operators should adjust camera settings to ensure the subject comes into sharp focus. The report also recommends using a traditional-looking camera in facial-recognition systems so that individuals could clearly recognize the camera and look into it.

Following the Dulles site visit, a study adopted these steps in taking facial images of 300 participants while mimicking the real-world conditions of a border entry point. In these tests, 100 percent of the images fully captured the participant's face; all of the participants faced the camera; and the researchers found additional improvements by using a graphical overlay to the camera display in order to better position the camera.

The researchers believe these steps will improve the performance of facial recognition systems in real-world settings using existing technology. A follow-up study is underway in which the researchers are incorporating the graphical overlay into the workflow of camera operators.

This work was sponsored by the Science and Technology Directorate at the Department of Homeland Security.

* M. Theofanos, B. Stanton, C. Sheppard, R. Micheals, J. Libert and S. Orandi. Assessing Face Acquisition. NIST Interagency Report (NISTIR) 7540, Sept. 2008.

Ben Stein | Newswise Science News
Further information:
http://www.nist.gov

More articles from Information Technology:

nachricht Study suggests buried Internet infrastructure at risk as sea levels rise
18.07.2018 | University of Wisconsin-Madison

nachricht Microscopic trampoline may help create networks of quantum computers
17.07.2018 | University of Colorado at Boulder

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>