Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Capturing the frugal beauty of complex natural tessellations

26.11.2018

Surface tessellations are an arrangement of shapes which are tightly fitted, and form repeat patterns on a surface without overlapping. Imagine the pattern of a giraffe's fur, the shell of a tortoise and the honeycomb of bees -- all form natural tessellations. Mimicking these natural designs computationally is a complex, multi-disciplinary problem. A global team of computer scientists has developed a new, alternate model for replicating these intricate surface designs, veering away from classical, multi-step approaches to a more efficient, streamlined algorithm.

"When we look at how natural tessellation occurs in nature, the individual cells grow simultaneously, and each individual cell does not necessarily know who are its neighboring cells nor their location or coordinates," explains lead author of the work, Rhaleb Zayer, researcher at Max Planck Institute for Informatics in Saarbrücken, Germany.


Amelia Earhart's Flight Suit (10M?) with 10 000 seeds, the resulting cells are visualized in different colors. A close-up of the cell distribution (top row) and the underlying mesh (middle and bottom rows) reveals small scale geometric complexity (pocket fold, button fold) that can successfully be processed with our computationally- and memory efficient approach.)

Courtesy: SIGGRAPH ASIA

Cells represent the shape or tiles that comprise intricate tessellation patterns. "To capture this behavior, we need to adopt an intrinsic view of the problem and depart from the widely adopted extrinsic perspective which requires full knowledge of all individual cell interactions and locations."

Typically, researchers have turned to the Voronoi model to mimic such repeat surface patterns. In mathematics, A Voronoi diagram partitions planes in a pattern based on the distances between points.

Efforts at extending the same idea to surfaces are hampered by the extensive costs of accurate distance measurements, bookkeeping and intersection computations.

In this new work, researchers simplify the creation of natural tessellations on surface meshes by dropping the assumption that regions need to be separated by lines.

Instead, they have developed a method that takes into account region boundaries in the pattern as narrow bands, which are not necessarily straight, and model the partition as a set of smooth functions layered over the surface.

Their method relies mainly on basic sparse linear algebra kernels, i.e. multiplication and addition, readily available, as they are the cornerstone of modern numerical computing.

"In this way, we provide small, concise, humanly readable and most importantly, platform-independent parallel code," notes Zayer.

"Observing the progress made in parallelizing existing serial Voronoi diagram codes over the last two decades, the performance gains achieved by our proposed method are very considerable," adds Markus Steinberger, coauthor of the work and an assistant professor at Graz University of Technology in Austria.

Zayer, Steinberger and their collaborators, which include Hans-Peter Seidel at Max Planck Institute for Informatics, and Daniel Mlakar at Graz University of Technology, will present their novel method at SIGGRAPH Asia 2018 in Tokyo 4 December to 7 December.

The annual conference features the most respected technical and creative members in the field of computer graphics and interactive techniques, and showcases leading edge research in science, art, gaming and animation, among other sectors.

In their paper, "Layered Fields for Natural Tessellations on Surfaces," the authors successfully demonstrate their new method on several large-scale test cases beyond the capabilities of state-of-the-art.

They were able to show that their method is applicable to highly detailed models, such as the 3D Model of the famed pilot Amelia Earhart's flight suit, encompassing ten million facets. Tessellations on the scan of the highly ornamented historic Pergolesi Side Chair showcase 30 million facets processed fully and efficiently on a single modern graphics-processing unit, aka, GPU. Despite the simplicity of the algorithm, the researchers say their solution proved to be comprehensive with minimal requirements.

In future work, Zayer and team hope to add the function of interactively editing tessellations using their framework. This feature could be aimed at designers and architects new to 3D printing applications and modeling. The researchers also intend to extend this work to higher dimensions and to the treatment of other metrics.

About SIGGRAPH Asia 2018

The 11th ACM SIGGRAPH Conference and Exhibition on Computer Graphics and Interactive Techniques in Asia (SIGGRAPH Asia 2018) will be held in Tokyo, Japan at the Tokyo International Forum from 4 to 7 December 2018. The annual event held in Asia attracts the most respected technical and creative people from all over the world who are excited by research, science, art, animation, gaming, interactivity, education and emerging technologies.

The four-day conference will include a diverse range of juried programs, such as the Art Gallery, Computer Animation Festival, Courses, Emerging Technologies, Posters, Technical Briefs, Technical Papers and Virtual & Augmented Reality. A three-day exhibition held from 5 to 7 December 2018 will offer a business platform for industry players to market their innovative products and services to the computer graphics and interactive techniques professionals and enthusiasts from Asia and beyond. For more information, please visit http://sa2018.siggraph.org. Find us on: Facebook, Twitter, Instagram and YouTube with the official event hashtag, #SIGGRAPHAsia.

About ACM SIGGRAPH

The ACM Special Interest Group on Computer Graphics and Interactive Techniques is an interdisciplinary community interested in research, technology, and applications in computer graphics and interactive techniques. Members include researchers, developers, and users from the technical, academic, business, and art communities. ACM SIGGRAPH enriches the computer graphics and interactive techniques community year-round through its conferences, global network of professional and student chapters, publications, and educational activities. For more information, please visit http://www.siggraph.org.

Jamie Huang | EurekAlert!
Further information:
https://sa2018.siggraph.org/en/attendees/technical-papers/session/32/details

Further reports about: 3D ACM Interactive Techniques Max Planck Institute SIGGRAPH computer graphics

More articles from Information Technology:

nachricht Accelerating quantum technologies with materials processing at the atomic scale
15.05.2019 | University of Oxford

nachricht A step towards probabilistic computing
15.05.2019 | University of Konstanz

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Summit charts a course to uncover the origins of genetic diseases

22.05.2019 | Life Sciences

New study finds distinct microbes living next to corals

22.05.2019 | Life Sciences

Stellar waltz with dramatic ending

22.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>