Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Capturing the frugal beauty of complex natural tessellations

26.11.2018

Surface tessellations are an arrangement of shapes which are tightly fitted, and form repeat patterns on a surface without overlapping. Imagine the pattern of a giraffe's fur, the shell of a tortoise and the honeycomb of bees -- all form natural tessellations. Mimicking these natural designs computationally is a complex, multi-disciplinary problem. A global team of computer scientists has developed a new, alternate model for replicating these intricate surface designs, veering away from classical, multi-step approaches to a more efficient, streamlined algorithm.

"When we look at how natural tessellation occurs in nature, the individual cells grow simultaneously, and each individual cell does not necessarily know who are its neighboring cells nor their location or coordinates," explains lead author of the work, Rhaleb Zayer, researcher at Max Planck Institute for Informatics in Saarbrücken, Germany.


Amelia Earhart's Flight Suit (10M?) with 10 000 seeds, the resulting cells are visualized in different colors. A close-up of the cell distribution (top row) and the underlying mesh (middle and bottom rows) reveals small scale geometric complexity (pocket fold, button fold) that can successfully be processed with our computationally- and memory efficient approach.)

Courtesy: SIGGRAPH ASIA

Cells represent the shape or tiles that comprise intricate tessellation patterns. "To capture this behavior, we need to adopt an intrinsic view of the problem and depart from the widely adopted extrinsic perspective which requires full knowledge of all individual cell interactions and locations."

Typically, researchers have turned to the Voronoi model to mimic such repeat surface patterns. In mathematics, A Voronoi diagram partitions planes in a pattern based on the distances between points.

Efforts at extending the same idea to surfaces are hampered by the extensive costs of accurate distance measurements, bookkeeping and intersection computations.

In this new work, researchers simplify the creation of natural tessellations on surface meshes by dropping the assumption that regions need to be separated by lines.

Instead, they have developed a method that takes into account region boundaries in the pattern as narrow bands, which are not necessarily straight, and model the partition as a set of smooth functions layered over the surface.

Their method relies mainly on basic sparse linear algebra kernels, i.e. multiplication and addition, readily available, as they are the cornerstone of modern numerical computing.

"In this way, we provide small, concise, humanly readable and most importantly, platform-independent parallel code," notes Zayer.

"Observing the progress made in parallelizing existing serial Voronoi diagram codes over the last two decades, the performance gains achieved by our proposed method are very considerable," adds Markus Steinberger, coauthor of the work and an assistant professor at Graz University of Technology in Austria.

Zayer, Steinberger and their collaborators, which include Hans-Peter Seidel at Max Planck Institute for Informatics, and Daniel Mlakar at Graz University of Technology, will present their novel method at SIGGRAPH Asia 2018 in Tokyo 4 December to 7 December.

The annual conference features the most respected technical and creative members in the field of computer graphics and interactive techniques, and showcases leading edge research in science, art, gaming and animation, among other sectors.

In their paper, "Layered Fields for Natural Tessellations on Surfaces," the authors successfully demonstrate their new method on several large-scale test cases beyond the capabilities of state-of-the-art.

They were able to show that their method is applicable to highly detailed models, such as the 3D Model of the famed pilot Amelia Earhart's flight suit, encompassing ten million facets. Tessellations on the scan of the highly ornamented historic Pergolesi Side Chair showcase 30 million facets processed fully and efficiently on a single modern graphics-processing unit, aka, GPU. Despite the simplicity of the algorithm, the researchers say their solution proved to be comprehensive with minimal requirements.

In future work, Zayer and team hope to add the function of interactively editing tessellations using their framework. This feature could be aimed at designers and architects new to 3D printing applications and modeling. The researchers also intend to extend this work to higher dimensions and to the treatment of other metrics.

About SIGGRAPH Asia 2018

The 11th ACM SIGGRAPH Conference and Exhibition on Computer Graphics and Interactive Techniques in Asia (SIGGRAPH Asia 2018) will be held in Tokyo, Japan at the Tokyo International Forum from 4 to 7 December 2018. The annual event held in Asia attracts the most respected technical and creative people from all over the world who are excited by research, science, art, animation, gaming, interactivity, education and emerging technologies.

The four-day conference will include a diverse range of juried programs, such as the Art Gallery, Computer Animation Festival, Courses, Emerging Technologies, Posters, Technical Briefs, Technical Papers and Virtual & Augmented Reality. A three-day exhibition held from 5 to 7 December 2018 will offer a business platform for industry players to market their innovative products and services to the computer graphics and interactive techniques professionals and enthusiasts from Asia and beyond. For more information, please visit http://sa2018.siggraph.org. Find us on: Facebook, Twitter, Instagram and YouTube with the official event hashtag, #SIGGRAPHAsia.

About ACM SIGGRAPH

The ACM Special Interest Group on Computer Graphics and Interactive Techniques is an interdisciplinary community interested in research, technology, and applications in computer graphics and interactive techniques. Members include researchers, developers, and users from the technical, academic, business, and art communities. ACM SIGGRAPH enriches the computer graphics and interactive techniques community year-round through its conferences, global network of professional and student chapters, publications, and educational activities. For more information, please visit http://www.siggraph.org.

Jamie Huang | EurekAlert!
Further information:
https://sa2018.siggraph.org/en/attendees/technical-papers/session/32/details

Further reports about: 3D ACM Interactive Techniques Max Planck Institute SIGGRAPH computer graphics

More articles from Information Technology:

nachricht Accelerating AI Together – DFKI Welcomes NVIDIA as Newest Shareholder
08.04.2020 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Innovative Technologies for Satellites
07.04.2020 | Julius-Maximilians-Universität Würzburg

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The human body as an electrical conductor, a new method of wireless power transfer

Published by Marc Tudela, Laura Becerra-Fajardo, Aracelys García-Moreno, Jesus Minguillon and Antoni Ivorra, in Access, the journal of the Institute of Electrical and Electronics Engineers

The project Electronic AXONs: wireless microstimulators based on electronic rectification of epidermically applied currents (eAXON, 2017-2022), funded by a...

Im Focus: Belle II yields the first results: In search of the Z′ boson

The Belle II experiment has been collecting data from physical measurements for about one year. After several years of rebuilding work, both the SuperKEKB electron–positron accelerator and the Belle II detector have been improved compared with their predecessors in order to achieve a 40-fold higher data rate.

Scientists at 12 institutes in Germany are involved in constructing and operating the detector, developing evaluation algorithms, and analyzing the data.

Im Focus: When ions rattle their cage

Electrolytes play a key role in many areas: They are crucial for the storage of energy in our body as well as in batteries. In order to release energy, ions - charged atoms - must move in a liquid such as water. Until now the precise mechanism by which they move through the atoms and molecules of the electrolyte has, however, remained largely unknown. Scientists at the Max Planck Institute for Polymer Research have now shown that the electrical resistance of an electrolyte, which is determined by the motion of ions, can be traced back to microscopic vibrations of these dissolved ions.

In chemistry, common table salt is also known as sodium chloride. If this salt is dissolved in water, sodium and chloride atoms dissolve as positively or...

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

 
Latest News

Doubts about basic assumption for the universe

08.04.2020 | Physics and Astronomy

Accelerating AI Together – DFKI Welcomes NVIDIA as Newest Shareholder

08.04.2020 | Information Technology

Ear’s inner secrets revealed with new technology

08.04.2020 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>