Siemens is equipping electric cars with completely redesigned information and communications technology (ICT).
Basically, the idea is to control a variety of vehicle functions on a uniform, centralized computer platform instead of providing every system with its own hardware and software as today. The aim is to simplify the complicated interplay of the many assistance, safety, and infotainment systems.
In addition, separating the software from the technology on which it runs facilitates retrofitting new features. In the same way that apps use smartphones' existing technology, such as GPS or cameras for their own purposes, integrated standard components such as proximity sensors, control units, and display elements could be used for new functions in automobiles. The all-new ICT concept was developed by Siemens' global Corporate Technology (CT) department and its partners in the government-funded RACE project.
The new ICT architecture will simplify the introduction of new functions in electric cars. It will also make it more cost-effective and enable the features to be installed in small batches of vehicles. To test these possibilities in real-life, researchers at CT will introduce the new technology into a StreetScooter electric delivery vehicle by December 2014.
In addition to communications networks and software, the vehicle will receive a standardized computer platform developed by CT. Siemens will also provide the company StreetScooter with a software development environment that will allow it to incorporate new functions into the system and integrate them into the car. StreetScooter GmbH develops and produces electric vehicles for short runs. It is currently focusing on creating customized solutions for transport vehicles used for parcel delivery services or local public transportation, for example.
The RACE project has developed an electronics and software architecture for electric vehicles that represents a paradigm shift for automobile manufacturing. Previously, automotive systems such as anti-lock braking systems, parking aids or air-conditioning controls had all been independent, stand-alone units. A mid-range car contains more than 70 of these control units from a variety of suppliers.
Ensuring they all interact smoothly with one another is therefore a complicated process. For the RACE project, the researchers at Siemens CT not only developed the central computer platform and the communications technology, but also the software that brings all of the different systems together and ensures their failsafe operation. This also simplifies the integration of safety-related systems, such as those needed for autonomous driving.
The government-funded project RACE (Robust and Reliant Automotive Computing Environment for Future eCars) will run until the end of 2014. Siemens is the consortium leader. Partners include TRW Automotive, AVL Software and Functions, fortiss, the University of Stuttgart, TU München, RWTH Aachen University, and the Fraunhofer Institute for Applied and Integrated Security (AISEC).
http://www.siemens.com/innovationnews
Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further reports about: > Apps > CT > Cars > Electric > ICT > communications technology > control units > different systems > electric cars > electric vehicles > new technology > paradigm shift > transport vehicles > vehicles
5G-ready: Interoperability of the Fraunhofer FOKUS software-based core network successfully tested
15.02.2019 | FOKUS - Fraunhofer-Institut für Offene Kommunikationssysteme
New RMU project in the field of artificial intelligence and deep learning
13.02.2019 | Johannes Gutenberg-Universität Mainz
For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.
The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...
Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens
Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...
Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light
When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...
The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...
Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.
DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.
Anzeige
Anzeige
Global Legal Hackathon at HAW Hamburg
11.02.2019 | Event News
The world of quantum chemistry meets in Heidelberg
30.01.2019 | Event News
16.01.2019 | Event News
Gravitational waves will settle cosmic conundrum
15.02.2019 | Physics and Astronomy
Spintronics by 'straintronics'
15.02.2019 | Physics and Astronomy
Platinum nanoparticles for selective treatment of liver cancer cells
15.02.2019 | Life Sciences