Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020

Interest in the use of fuel cells is steadily increasing as a result of the shift toward e-mobility and the broader adoption of renewable energy sources. To examine this development, the Fraunhofer Institute for Laser Technology ILT is organizing the first Laser Colloquium Hydrogen LKH2, which will take place in Aachen on March 18, 2020. The event will focus not only on laser cutting and welding of fuel cell components, but also on the execution and monitoring of the entire process chain.

On March 18, 2020, LKH2 attendees will be treated to a wide range of presentations covering the use of laser technology in the realm of hydrogen: the first element in the periodic table is a key element of fuel cells.


Fraunhofer ILT will be holding its Laser Colloquium Hydrogen LKH2 on March 18, 2020. It will focus on laser welding and cutting of bipolar plates and the entire fuel cell manufacturing process chain.

© Fraunhofer ILT, Aachen, Germany

Some experts regard fuel cells as a smart alternative for addressing global mobility challenges due to their high energy efficiency.

The use of hydrogen in fuel cells is attracting increasing attention in numerous applications, especially since it is widely regarded as a useful addition to other activities in the world of e-mobility.

Growing interest among industry experts, researchers and policymakers

“We’re getting an increasing number of inquiries about fuel cells, hydrogen infrastructure and similar topics,” says André Häusler, team leader for the micro joining of metallic materials at Fraunhofer ILT.

“Policymakers are also paying more attention to this new technology, because when you take into account all the aspects of producing and recycling lithium-ion cells, you start to wonder how sustainable electric drives really are – especially considering the changes that must be made to the power grid.”

Toyota and Hyundai are two companies that have taken these concerns on board. They recently began offering fuel cell vehicles as an integral part of their product range, highlighting the benefits these offer over electric vehicles in terms of both range and ease of energy storage.

It also takes considerably less time to refuel a car with hydrogen than to charge an electric battery.

Highly efficient laser technology available along the entire process chain

Laser technology has a key role to play in fuel cell manufacturing, with highly efficient laser methods now available at every stage of the process chain. The Aachen-based experts are therefore confident that the use of laser technology will continue to expand in this area thanks to its outstanding flexibility and high degree of automation.

Bipolar plates: more work needed on process expertise

The colloquium aims to examine the current state of the art with presentations on topical issues such as the production of bipolar plates. Depending on the specific design in each case, a fuel cell typically consists of around 200 of these catalyst-coated plates, which serve as electrodes.

These require hydrogen-proof seals throughout, potentially leading to seam lengths of over 200 meters for each fuel cell.

Nevertheless, researchers at Fraunhofer ILT recently discovered, much to their surprise, that there are virtually no specialist publications of any major significance on the fabrication and production of bipolar plates.

They were also keenly aware that methods such as laser beam welding have traditionally been too slow to get the job done.

Easily weldable configurations optimize joining processes

This has inspired them to take a closer look at the process. “We aim to work with specialists from industry and research to find out what the key problems currently are,” says Häusler, explaining the motivation behind the project.

“We’ll be tackling issues such as easily weldable designs that facilitate laser joining and the complex laser cutting of prefabricated bipolar plates.”

Users employ both metal and polymer-based bipolar plates, so the colloquium will also include a presentation on laser joining of polymer plates. The Aachen-based team also has its sights set on the end-to-end process, with presentations scheduled to take place on establishing and monitoring process chains in a production setting.

Against this backdrop, funding approval was recently granted for a new project called CoBiP, which aims to create an innovative, turnkey solution for manufacturing high-quality bipolar plates. CoBiP covers all the key processes involved in micro rolling and forming, laser welding, laser cutting and coating.

The goal is to create an adaptable, autonomous solution that will significantly increase the efficiency and quality of the value chain. The project “CoBiP – Continuous roll-to-roll production of bipolar plates for fuel cells” will receive funding from the German Federal Ministry for Economic Affairs and Energy (BMWi) for a period of 3 years and is supervised by the Project Management Jülich (PtJ).

Participating in this project under the leadership of the Fraunhofer Institute for Production Technology IPT: Institute of Energy and Climate Research – Techno-Economic Systems Analysis (IEK-3) at Forschungszentrum Jülich, e.GO REX GmbH in Aachen, Precors GmbH in Jülich, Matthews International GmbH in Vreden and Fraunhofer ILT in Aachen.

Best practice from industry and research

Fraunhofer ILT is keen to provide a balanced mix of theory, research and practice and has already signed up a number of industry representatives to speak at the colloquium.

These include Gräbener Maschinentechnik from Netphen, a German pioneer in the production of bipolar plates, and plasmo Industrietechnik from Vienna, a company that specializes in a number of different fields, including quality assurance for automated laser welding processes.

The first Laser Colloquium Hydrogen LKH2 will take place at Fraunhofer ILT in Aachen on March 18, 2020. The presentations will be held in German. The registration deadline for the colloquium is February 19, 2020. Early birds who sign up on or before January 16, 2020 will receive a discount. Register online at www.ilt.fraunhofer.de/lkh2

Wissenschaftliche Ansprechpartner:

André Häusler M. Sc.
Group Micro Joining
Telephone +49 241 8906-640
andre.haeusler@ilt.fraunhofer.de

Dr.-Ing. Alexander Olowinsky
Group Manager Micro Joining
Telephone +49 241 8906-849
alexander.olowinsky@ilt.fraunhofer.de

Weitere Informationen:

http://www.ilt.fraunhofer.de/en.html
http://www.ilt.fraunhofer.de/lkh2

Petra Nolis M.A. | Fraunhofer-Institut für Lasertechnik ILT

More articles from Event News:

nachricht „Advanced Battery Power“- Conference, Contributions are welcome!
07.01.2020 | Haus der Technik e.V.

nachricht International Coral Reef Symposium 2020 Holds Photo Competition
19.12.2019 | Universität Bremen

All articles from Event News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: World Premiere in Zurich: Machine keeps human livers alive for one week outside of the body

Researchers from the University Hospital Zurich, ETH Zurich, Wyss Zurich and the University of Zurich have developed a machine that repairs injured human livers and keep them alive outside the body for one week. This breakthrough may increase the number of available organs for transplantation saving many lives of patients with severe liver diseases or cancer.

Until now, livers could be stored safely outside the body for only a few hours. With the novel perfusion technology, livers - and even injured livers - can now...

Im Focus: SuperTIGER on its second prowl -- 130,000 feet above Antarctica

A balloon-borne scientific instrument designed to study the origin of cosmic rays is taking its second turn high above the continent of Antarctica three and a half weeks after its launch.

SuperTIGER (Super Trans-Iron Galactic Element Recorder) is designed to measure the rare, heavy elements in cosmic rays that hold clues about their origins...

Im Focus: LZH’s MOMA laser ready for the flight to Mars

One last time on Earth it has been turned on in France in December 2019. The next time the MOMA laser developed by the Laser Zentrum Hannover e.V. (LZH) is going into operation will be on Mars. The ExoMars rover into which the laser is integrated has now successfully passed the thermal vacuum tests at Airbus in Toulouse, France.

For 18 days the ExoMars rover Rosalind Franklin was subjected to thermal vacuum tests at Airbus. There, it had to withstand strong changes in temperature and...

Im Focus: Atacama Desert: A newly discovered biocoenosis of lichens, fungi and algae shapes entire landscapes

The Atacama Desert in Chile is the oldest and most arid desert on earth. Organisms living in this area have adapted to the extreme conditions over thousands of years. A research team led by Dr Patrick Jung has now discovered and investigated a previously unknown biocoenosis of lichens, fungi, cyanobacteria and algae. It colonises tiny stones, so-called grit and its need for water is satisfied by fog and dew. These organisms also decompose the rock on and in which they live. The scientists believe that this is how they have shaped the landscape of the Atacama Desert. Their study was published in the renowned scientific journal "Gebiology".

Many desert areas have large black spots in the sand. These spots are mineral deposits, so-called desert varnish. In the Atacama Desert, which can be compared...

Im Focus: Nano antennas for data transfer

For the first time, physicists from the University of Würzburg have successfully converted electrical signals into photons and radiated them in specific directions using a low-footprint optical antenna that is only 800 nanometres in size.

Directional antennas convert electrical signals to radio waves and emit them in a particular direction, allowing increased performance and reduced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

International Coral Reef Symposium 2020 Holds Photo Competition

19.12.2019 | Event News

The Future of Work

03.12.2019 | Event News

 
Latest News

University of Ottawa tool to democratize nanopore research

15.01.2020 | Physics and Astronomy

Galactic gamma-ray sources reveal birthplaces of high-energy particles

15.01.2020 | Physics and Astronomy

Induced pluripotent stem cells for the research of HIV and the innate immune system

15.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>