Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Worldwide atmospheric measurements to determine the role of atmospheric fine particles in climate change

16.11.2007
Finnish-led international aerosol project starts extensive worldwide atmospheric measurements: will determine the role of atmospheric fine particles in climate change

The Finnish Meteorological Institute in Helsinki, Finland, will host the first annual meeting of the European Integrated Project on Aerosol Cloud Climate and Air Quality Interactions, EUCAARI, headed by Academy Professor Markku Kulmala, on 19–22 November 2007. The purpose of EUCAARI is to significantly improve current knowledge of the impact of fine particles in the atmosphere on climate and air quality.

The first year of the project was dedicated to developing state-of-the-art aerosol measuring equipment, establishing a global network of measuring stations, and planning. The measuring period, beginning next spring, will collect data on European air through both ground-based and airborne measurements simultaneously.

During the past year, this EU-wide research project has developed an extremely sensitive measuring device for aerosols, allowing for reliable measurements of particles less than 3 nanometres across. Such a development in measuring technology will play a key role when solving the physical and chemical questions of aerosol generation and formation, and has already enabled significant, recently-published new observations on the quantity of particles less than 3 nm in size.

The past few months have also seen the establishment of a global measuring station network for EUCAARI. Stations have been established in Brazil, South Africa, China, and India. They cover measurement areas that are geographically important for the monitoring of air pollution. For example, the Brazilian station is located in the rainforest region, and the South African station in the savannah area. The stations will start operating from the beginning of 2008. In addition to the University of Helsinki, the Finnish Meteorological Institute plays a key role in running the observation stations and planning the infrastructure.

Next May, a new, month-long measuring period will begin. During that time, the atmosphere above Europe will be observed simultaneously from both ground-based and aircraft-borne equipment. The data-gathering flights will move across Europe in various directions. This will provide measuring data on, for example, the development of aerosol quantities at various altitudes in the atmosphere, and trace the long-range migration of air masses and various kinds of pollution. The month-long measurement period is part of a wider 15-month (1 March 2008–31 May 2009) intensive EUCAARI ground-based measurement campaign involving measuring stations in and outside Europe. The University of Helsinki’s Hyytiälä Forestry Field Station will contribute to this intensive period by providing ground-based measurements.

The four-year long EUCAARI was launched in January 2007, and will end in December 2010. The total budget of EUCAARI, currently the largest aerosol project in Europe, is €15 million, 10 million of which is covered by the European Union. The project employs researchers from 25 different countries.

Minna Meriläinen | alfa
Further information:
http://www.atm.helsinki.fi/eucaari/index.php?option=com_frontpage&Itemid=67

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>