Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Healthy reefs hit hardest by warmer temperatures

08.05.2007
Coral disease outbreaks hit hardest in the healthiest sections of the Great Barrier Reef, where close living quarters among coral may make it easy for infection to spread, University of North Carolina at Chapel Hill researchers have found.

Despite a link to warmer ocean temperatures, coral disease defies predictability, with puzzling variations between years and locations. The international research team, led by UNC-Chapel Hill, tracked an infection called white syndrome in 48 reefs along more than 900 miles (1,500 kilometers) of Australia’s coastline for six years. While higher temperatures drove the disease outbreaks, the team also discovered a strong connection between white syndrome and coral cover, a measure of reef health. The highest-cover reefs, which had living coral covering more than 50 percent of the ocean floor, had major outbreaks after warm years. Disease was usually absent on low-cover reefs.

Understanding the causes of disease outbreaks will help ecologists protect reef-building corals, which support commercial marine species and buffer low-lying coastal areas. "More diseases are infecting more coral species every year, leading to the global loss of reef-building corals and the decline of other important species dependent on reefs," said lead study author John Bruno, Ph.D., assistant professor of marine ecology and conservation in UNC’s College of Arts and Sciences. "We’ve long suspected climate change is driving disease outbreaks. Our results suggest that warmer temperatures are increasing the severity of disease in the ocean," Bruno said.

The results were published May 8, 2007, in the online journal PLoS Biology. The study is one of the largest and longest surveys of ocean temperature and coral disease and is the first to conclusively demonstrate a link between disease severity and ocean temperature, Bruno said.

The colorful coral colonies that attract visitors to the Great Barrier Reef live atop a limestone scaffolding built from the calcium carbonate secretions of each tiny coral, or polyp. While polyps provide the framework, coral’s vivid hues come from symbiotic single-celled algae that live within the polyp’s cells. The algae supply much of the food coral need to survive. When disease or stressful environmental conditions strike a coral colony, the polyps expel their algae. This algae loss makes the coral look pale.

During the study, the researchers monitored target reefs for white syndrome, which infects Pacific reef-building corals. The disease results in a white band of tissue or exposed coral skeleton that moves across a colony as infection progresses. (White isn’t the only color of diseased coral – other syndromes include black band, yellow blotch and dark spots.)

Scientists from the Australian Institute for Marine Sciences made yearly visits to the same reefs, applying epidemiological methods similar to those used for tracking human disease. They found white syndrome present on the reefs when the survey started in 1998. However, the syndrome’s frequency increased 20-fold in 2002 following a particularly warm summer. Sea surface temperature was monitored at each site using National Oceanic & Atmospheric Administration (NOAA) satellites.

Even during the peak of the 2002 outbreak, there was considerable variation in disease frequency among reefs, Bruno said. No white syndrome cases were recorded from 45 percent of the low cover reefs, while 88 percent of reefs above the high cover threshold at least one infected colony.

Reefs with high coral cover and warm sea surface temperatures had the greatest white syndrome frequency. Most of the outbreaks occurred in the Cooktown/Lizard Island and Capricorn Bunkers sectors of the Great Barrier Reef, which are some of the healthiest reefs in the Pacific, Bruno said.

The study shows that stress caused by anomalously warm ocean temperatures is necessary, but not sufficient, for white syndrome outbreaks to occur, Bruno said. Coral cover must also be high. "There is a cover threshold of approximately 50 percent for white syndrome outbreaks," he said.

High coral cover could facilitate infection in several ways, Bruno explained. Abundance may increase disease vectors, such as fish, or lead to more competition – coral polyps compete with their neighbors via tentacles and digestive filaments that cause lesions and tissue damage, providing an inroad for infection. Close quarters among coral colonies could also make it easier to spread disease.

The research was funded in part by grants from the National Science Foundation; an Environmental Protection Agency STAR Fellowship; the NOAA Coral Reef Conservation Program; the Australian Institute of Marine Science; and UNC-Chapel Hill.

"This study developed valuable methods to pinpoint warm temperature as a partial driver of disease outbreaks. These methods will also be used to study climate drivers of disease outbreaks in other regions of the world," said Drew Harvell, Ph.D., Cornell University professor of ecology and evolutionary biology and a study co-author. Harvell’s work was supported by the Global Environmental Fund’s Coral Sustainability Program. The program is developing new scientific methods to improve study of climate and more local influences on coral sustainability.

Becky Oskin | EurekAlert!
Further information:
http://www.unc.edu

More articles from Ecology, The Environment and Conservation:

nachricht Foxes in the city: citizen science helps researchers to study urban wildlife
14.12.2018 | Veterinärmedizinische Universität Wien

nachricht Machine learning helps predict worldwide plant-conservation priorities
04.12.2018 | Ohio State University

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>