Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reclaimed Wastewater: An Idea that Could Soak in

11.08.2005


As water becomes ever more scarce, quenching thirsty crops with wastewater may be OK if done right, researchers here say.

"Managing reclaimed water by pretreating before using it to irrigate, monitoring for viruses, choosing correct crops and periodically leaching the soils should be successful and safe," said Dr. George Di Giovanni, Texas Agricultural Experiment Station environmental microbiologist.

Di Giovanni and his colleagues studied the movement of viruses carried in water through sandy and clay soils on which spinach was planted. They were interested in how long viruses in the water remain in the soil, how they move through the soil and whether they could harm humans or livestock. Their findings have been accepted for an article in Agriculture Ecosystems and Environment journal.



"No bacteriophage (virus) was found on the spinach leaves, regardless of the type of soil they grew in," Di Giovanni said.

The tests were done in a greenhouse in soil collected from the region. Two types of water were tested – a blend of reclaimed water and filtered wastewater laced with bacteriophage, which is a type of virus that infects only bacteria. A bacteriophage is often used in studies as a substitute for human viruses, Di Giovanni said. The water was dripped under the soil surface in plastic columns built for the test.

The research found that bacteriophage could be found on the crusty surfaces of both soil types and remained in the clay soil for about a month after irrigation ended.

"That suggests that human viruses could also linger in the soil," Di Giovanni said. "Reclaimed water must be effectively treated to remove or kill pathogens before use, regardless of irrigation method."

Finding such uses for reclaimed water is vital, said Experiment Station wastewater researcher Dr. Naomi Assadian.

"Wastewater reuse for agriculture and managed landscapes will be necessary to meet growing water demands and conserve current drinking supplies in arid regions such as the upper Rio Grande River area," Assadian said. "But alternative supplies, such as treated municipal wastewater, often contain microbial and chemical elements that may affect public health and/or the environment."

Assadian and Di Giovanni collaborated on the project with Dr. Jaime Iglesias, Texas Cooperative Extension agent in El Paso County; Dr. Juan Enciso, Experiment Station agriculture engineer in Weslaco; and Dr. William Lindemann, New Mexico State University agronomist.

The researchers said a "closed system," as in their method of using underground pipes to apply water to the crop, limited exposure to the soil surface and edible parts of the crop, a positive finding as scientists continue to explore how to reuse water.

While their study showed a feasible use of wastewater, the researchers said similar trials would need to be conducted at each site where such a system is considered. That’s because variations in soil might yield different results, they said.

The study was funded by the Texas Department of Agriculture, U.S. Department of Agriculture and the Experiment Station.

Kathleen Phillips | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Ecology, The Environment and Conservation:

nachricht 5000 tons of plastic released into the environment every year
12.07.2019 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Climate impact of clouds made from airplane contrails may triple by 2050
27.06.2019 | European Geosciences Union

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>