Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Food crops worth millions lost due to ozone

08.10.2004


University of York calculates huge economic impact of ozone



Increased ozone concentrations at ground level may be causing millions of pounds of damage to UK food crops, according to a University of York researcher. Building on a previous study on ozone concentrations in the environment, which estimated that in 1990 alone the UK lost £130million in crops due to ozone taken up by plants, Dr Lisa Emberson of the Stockholm Environment Institute has been developing new methods to calculate the amount of ozone that agricultural crops absorb.

Her figures incorporate factors such as species-specific and environmental conditions (e.g. growing season, drought and humidity) that, in combination with ozone concentrations, determine plant susceptibility. Applying this new method for the UK, the loss of production in two staple crops, wheat and potato, translates into economic losses of approximately £70million and £14million respectively. The scale of damage varies by region according to ozone levels, climate, and crop distribution.


The figures only take into account the effect on the quantity or yield of the crop, and do not include other ozone damage such as leaf injury or poor grain quality. Work is now underway to assess the threat to maize, tomato, sunflower and sugar beet – economically important crops which are sensitive to ozone. Ozone is a naturally occurring atmospheric gas. High up in the earth’s atmosphere, it plays a crucial role in filtering out harmful ultraviolet radiation that would otherwise damage life on earth. However, at ground level, it damages human health, vegetation and materials and is also a potent greenhouse gas.

Before industrialisation, annual mean ozone concentrations were between 10 to 15 parts per billion (ppb). Concentrations have now risen to around 30 ppb, and hot sunny days in the UK lead to concentrations that can exceed 100 ppb. Dr Emberson said: “Research into the effects of ozone on UK crops is remarkably limited given the economic implications of the problem. Most research has focused on visible injuries or reductions in yield rather than nutritional content.” Dr Emberson says ozone is a significant global problem. Concentrations have been increasing in many parts of the world, particularly in Asia where crop losses may hit the poor the hardest. “It’s crucial to agricultural management to understand the combined stresses of ozone pollution and climate, especially given the projected increase in background ozone concentrations and changes in climate likely to occur in coming decades,” she added.

Dr Emberson is co-editor of the recently-published ‘Air Pollution Impacts on Crops and Forests’ which has collated key studies in which the Asian region was identified as facing the most serious risks to agricultural productivity both now and in the future.

The Stockholm Environment Institute at York has established an Air Pollution Crop Effect Network, and a workshop in Bangkok organised by Dr Emberson brought together 30 delegates from 15 different countries to initiate a co-ordinated effort to assess air pollution impacts across the south Asian region. Further details of this project can be found at http://www.york.ac.uk/inst/sei/rapidc2/impactscrops.html

Dr Lisa Emberson | alfa
Further information:
http://www.york.ac.uk/inst/sei/rapidc2/impactscrops.html
http://www.york.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>