Evidence for the impact of climate change on deep-sea biodiversity

Deep-sea ecosystems (at depths of >1000 m) comprise more than 60% of the Earth surface, and are the main reservoirs of global biodiversity.

Climate changes are expected to induce significant modifications in biodiversity on the global scale, yet little is known on the impact of recent climate changes on the deep-sea biodiversity. In the forthcoming issue of Ecology Letters, Danovaro, Dell’Anno and Pusceddu demonstrate that an extensive climate anomaly, which occurred in the Eastern Mediterranean, caused a significant deep-sea biodiversity change.

These results indicate that temperature shifts of 0.05-0.1 °C in the deep sea are sufficient to induce significant changes in species richness and functional diversity. They conclude that deep-sea fauna is highly vulnerable to environmental alteration, and that very minor temperature shifts in deep-water masses can rapidly and significantly alter both structural and functional deep-sea biodiversity. This study provides new elements towards a better understanding of the potential large-scale consequences of climate change.

Media Contact

Kate Stinchcombe alfa

All latest news from the category: Ecology, The Environment and Conservation

This complex theme deals primarily with interactions between organisms and the environmental factors that impact them, but to a greater extent between individual inanimate environmental factors.

innovations-report offers informative reports and articles on topics such as climate protection, landscape conservation, ecological systems, wildlife and nature parks and ecosystem efficiency and balance.

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors