Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellite Instrument to Provide New Details on Ozone

22.06.2004


Just after 3 a.m. on July 10, University of Colorado at Boulder researcher John Gille expects to watch a new NASA satellite blast into orbit from the dark California coastline on a mission to study Earth’s protective ozone layer, climate and air quality changes with unprecedented detail.



Gille, principal investigator on the satellite’s High Resolution Dynamics Limb Sounder (HIRDLS) instrument, said he and his sleep-deprived colleagues will probably only get to watch the rocket for a few moments before it disappears into a thick deck of clouds that typically settles over the area this time of year.

The irony isn’t lost on Gille, who’s been at work on the instrument since 1988. "Writing about clouds in a meteorological journal, a scientist once said, ’There’s no way to deal with these troublesome objects,’ " he laughed.


Surface ozone pollution and air quality deterioration -- byproducts of agricultural burning, deforestation, urban activity and industry -- are increasing worldwide. Questions remain about the recovery of the protective ozone layer and the role of chemistry in climate change. HIRDLS and three other instruments on NASA’s AURA satellite are designed to address these questions in detail.

HIRDLS is an international collaboration between scientists and engineers in the U.S. and Britain. Gille is HIRDLS U.S. principal investigator, and along with his Oxford University counterpart he is responsible for the overall success of the instrument, including design, testing, collection and use of data for scientific purposes
.
At CU-Boulder, Gille is an adjoint professor in the Program in Atmospheric and Oceanic Sciences and senior research associate at the Center for Limb Atmospheric Sounding. "Limb" is the astronomical term for the edge of a planet and its atmosphere.

"Unlike the satellite images you see during TV weather forecasts, which are looking straight down at the Earth, our instrument is looking off toward the horizon," Gille said. "We look at the horizon from orbit, scanning up and down for a profile view."

The profile gives scientists insight into radiation, temperature and distribution of gases at different levels in the atmosphere. The data is then used to study the ozone layer, climate change and interaction between layers of the atmosphere.

HIRDLS will scan the mid- to upper-troposphere and the tropopause, the boundary region between the troposphere and the stratosphere. The troposphere extends upward from the Earth’s surface to about 10 miles high at the equator and five miles high at the North and South poles. The stratosphere, which contains trace gases as well as the radiation-absorbing ozone layer, lies on top of the troposphere.

HIRDLS is expected to present a much clearer picture of whether the ozone layer is recovering, as well as the distribution of greenhouse gases that influence climate.

"HIRDLS has much finer horizontal resolution than we’ve ever had before," Gille said. "We can send commands to the satellite to zoom in and get readings with resolutions as fine as 30 to 60 miles, and a vertical resolution of 1,500 feet. Also, the HIRDLS detectors are up to 10 times more sensitive than similar instruments that have flown in the past."

The instrument is designed to last much longer in orbit than its predecessors, too. Thanks to an onboard mechanical refrigerator built by Ball Aerospace and Technologies Corp. of Boulder, scientists expect it will last longer than five years. It’s hoped that longer-term trends can be predicted with the volume of data that will be collected.

The HIRDLS project began in 1988. Since that time, Gille and his research team at the university have led a collaborative effort to design and build the instrument with scientists and engineers at Oxford University in the United Kingdom, the National Center for Atmospheric Research in Boulder, the University of Washington and Lockheed Martin in Palo Alto, Calif.

Gille expects many of those who have worked on HIRDLS during the past 16 years to make the trip to Vandenburg Air Force Base, north of Santa Barbara, Calif., for the July 10 AURA launch at 3:01 a.m. Pacific Daylight Time

| newswise
Further information:
http://www.eos.ucar.edu/hirdls

More articles from Ecology, The Environment and Conservation:

nachricht Deep decarbonization of industry is possible with innovations
25.03.2019 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Five-point plan to integrate recreational fishers into fisheries and nature conservation policy
20.03.2019 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Laser processing is a matter for the head – LZH at the Hannover Messe 2019

25.03.2019 | Trade Fair News

A Varied Menu

25.03.2019 | Life Sciences

‘Time Machine’ heralds new era

25.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>