Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient pollen yields insight into forest biodiversity

05.06.2003


By analyzing data on tree pollen extracted from ancient lake sediments, ecologists have sharpened the understanding of how forests can maintain a diversity of species. Their findings indicate that stabilizing processes have been more important than previously thought, and that the human-caused loss of species could upset that stability in ways that remain poorly understood.

"Quantifying the link between stability and diversity, and identifying the factors that promote species diversity, have challenged ecologists for decades," said Saran Twombly, program director in the National Science Foundation (NSF)’s division of environmental biology, which funded the research. "The contribution of this study is unique, as the scientists used a clever blend of long-term data and statistical modeling to test the opposing hypotheses of neutrality and stability as key factors promoting community assembly and diversity."

Scientist James Clark and graduate student Jason McLachlan of Duke University, published their findings in this week’s issue of the journal Nature.



According to Clark, the purpose of their study was to address a central scientific problem in explaining the diversity of tree species in a forest.

"In the mathematical models ecologists use to describe how different species compete for resources such as light, moisture and nutrients, it can be difficult to get species to coexist," he said. "In models, slight advantages allow one species to ’outcompete’ the other, leading to extinction, that is, loss of biodiversity. And so, ecologists have put a lot of effort into trying to understand the differences among species that would allow one species to coexist with another species."

Explaining such coexistence is critical, if ecologists are to truly understand forest biodiversity and the forces that sustain or reduce it, said Clark. According to Clark, two basic hypotheses have arisen to explain forest biodiversity. One theory holds that stabilizing forces are required for many species to coexist.

"For example, one might imagine that, if one species is limited by light, and another by moisture, they could coexist because they’re not really competing that much," said Clark.

"An alternative ’neutral model’ hypothesizes that species are so similar it just takes a long time for winners and losers to be sorted out by competition," said Clark. "But eventually the better competitor would drive the other to extinction."

Direct observations to distinguish which model is correct would take centuries, said Clark, "So in this study we came up with a way to test the neutral model based on long-term changes in species abundance that are evident in the pollen record."

So, Clark and McLachlan examined existing data on pollen from red maple, birch, beech, ash, oak, hemlock and elm trees isolated from cores of lake sediments in southern Ontario.

"This record covers about 10,000 years, so if we look at the relative abundance of different species over that time--which encompasses perhaps several hundred generations of trees--we can estimate long-term growth rates," said Clark.

According to Clark, the neutral model would predict that the variation among the sites would increase over time, as random chance caused different species to go extinct in some areas but not others.

Some sites, just by chance, should come to be dominated by one species, while others would come to be dominated by another species.

However, the researchers found that variance among the sites did not increase over the millennia, leading them to conclude that stabilizing forces were maintaining forest diversity.

"Our findings indicate there are factors that regulate populations at relative abundances that are consistent from one place to another," said Clark." The variation from place to place is not ’neutral.’ Ecologists have long known that, within a region, some species tend to be more abundant and some species less abundant. Our study doesn’t identify what those stabilizing forces are, but it clearly shows they do not arise from neutral dynamics." Indeed, said Clark, a major challenge for ecologists is to attempt to understand what the stabilizing forces are in forest biodiversity.

"Ecologists have devoted a lot of research to that understanding, but substantial challenges remain," said Clark.

"A long-held view that there are tradeoffs among species, in which each has a unique set of competitive advantages and disadvantages that determines its abundance, is often not supported by data."

"What we are seeing is huge variability within populations," said Clark. "And this variability means they overlap in ways that determines who’s going to win and who’s going to lose. And that variability might itself represent a stabilizing mechanism."

Clark emphasized, however, that even though the role of stabilizing mechanisms remains unknown, the results from his and McLachlan’s studies offer cautionary lessons.

"Our findings suggest that forest biodiversity has probably been stabilized in some important ways, so extinction of species should cause us greater concern than if we believed that biodiversity was maintained in the past by continual replenishment of random extinction by generation of new species," he said.

"So, there’s a lot for ecologists to do to really understand the extent to which differences among species are responsible for diversity."


Duke University Media Contact: Dennis Meredith, (919) 681-8054, dennis.meredith@duke.edu,

NSF Program Contact: Saran Twombly, (703) 292-8481, stwombly@nsf.gov

Cheryl Dybas | NSF
Further information:
http://www.nsf.gov
http://www.nsf.gov/home/news.html
http://www.nsf.gov/sbe/srs/stats.htm

More articles from Ecology, The Environment and Conservation:

nachricht Rethinking the science of plastic recycling
24.10.2019 | DOE/Argonne National Laboratory

nachricht Sinking groundwater levels threaten the vitality of riverine ecosystems
04.10.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

Im Focus: A Memory Effect at Single-Atom Level

An international research group has observed new quantum properties on an artificial giant atom and has now published its results in the high-ranking journal Nature Physics. The quantum system under investigation apparently has a memory - a new finding that could be used to build a quantum computer.

The research group, consisting of German, Swedish and Indian scientists, has investigated an artificial quantum system and found new properties.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

Small RNAs link immune system and brain cells

13.11.2019 | Life Sciences

New Pitt research finds carbon nanotubes show a love/hate relationship with water

13.11.2019 | Materials Sciences

Magnets for the second dimension

12.11.2019 | Machine Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>