Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solid management, natural resilience both key to sockeye success

12.05.2003


The resilience of sockeye salmon runs in Alaska’s Bristol Bay -– after a century of fishing they’re as healthy as they’ve ever been – is about strength in numbers.



It’s not just an abundance of fish, although the numbers returning to spawn is tens of millions more than the total across the lower 48 states and prudent actions by fishermen and the Alaska Department of Fish and Game have helped make it a classic example of a sustainable fishery.

As it turns out, it’s also about having a large number of population segments, or components, the fish in each programmed to breed and thrive under conditions somewhat different from the fish in other components, University of Washington researchers report in this week’s Proceedings of the National Academy of Sciences.


It’s an important natural buffer in the face of changing environmental conditions, particularly those affected by climate, that can make winners out of seemingly insignificant components of the population, or stock, while dwarfing the once mighty.

Salmon managers in the Pacific Northwest and elsewhere, as well as those overseeing other fish and shellfish populations, need to consider this biocomplexity within a species, say the UW’s Ray Hilborn, Thomas P. Quinn and Donald Rogers, all professors of aquatic and fishery sciences, and Daniel Schindler, associate professor of biology. The loss of biocomplexity is a characteristic of salmon in the Pacific Northwest, where many stock components were lost because of dams or deliberate overharvesting in an attempt to maximize catch from hatcheries, the authors say.

It’s why protecting only the habitat and fish of today’s strongest runs is a mistake. One can’t know for sure which runs might “stumble” in the future, Quinn says.

Sockeye is one of four species of salmon found on the West Coast and in Alaska. It is most different from the other species because the young spend a year, sometimes more, in freshwater lakes before heading to sea. Alaska’s Bristol Bay sockeye has traditionally been the most valuable salmon fishery in the world, at its height worth $200 million to $400 million and, with today’s prices, worth between $30 million and $50 million.

In work funded by the National Science Foundation, the Bristol Bay salmon processors and the University of Washington, the scientists looked at the shifting fortunes of the salmon in the three Bristol Bay fishing districts, each with its distinct network of rivers and lakes. Through the 1950s, ’60s and mid ’70s, when conditions tended to be cooler and drier because of the influence of the Pacific Decadal Oscillation, the Naknek and Kvichak network far exceeded the other two districts. The dominant contribution was from Lake Iliamna, the United State’s largest lake behind the Great Lakes.

In 1977-78 the Pacific Decadal Oscillation switched to a different phase leading to warmer and wetter conditions with higher water levels and flows among the results. The productivity of the three fishing districts began shifting in response, Hilborn says.

Today Lake Iliamna contributes so few fish that it requires special protective management. The Egegik network, which feeds another of the fishing districts studied and which earlier accounted for a mere 5 percent of the catch, expanded greatly until the ’90s when the third fishing district, the Nushagak, increased. In some recent years, the Nushagak has been the most important fishery in Bristol Bay. "In the 1950s, managers could have chosen to overlook the Egegik or Nushagak systems, and at the time the cost would have appeared to be low," the authors write.

The Bristol Bay sockeye stock is an amalgamation of several hundred discreet populations, or components. It’s all those local adaptations that stabilize the system, Quinn says. The advantage goes to deeper-bodied males when fighting for places to spawn and attracting females, until one considers what happens when streams run lower than usual. Then those deeper-bodied males are more likely to become stranded and, because they stick up higher out of the water, are easier for hungry bears to bite than males in the components of the stock that have average, or even smaller-than-average, body depths.

Egg size, preferred spawning sites, the size of young when hatched are among the many other adaptations that could give advantages depending on conditions.

"We buy insurance for the future by having networks of habitat and not just trying to save the habitat of today’s strongest runs," Schindler says. This might necessitate a much finer scale of management than is the current norm, the co-authors say.


For more information: Hilborn, (206) 543-3587, rayh@u.washington.edu; Quinn, (206) 543-9042, tquinn@u.washington.edu; Schindler, (206) 616-6724, deschind@u.washington.edu

For a copy of the article: Jill Locantore, PNAS, 202-334-1310, jlocantore@nas.edu

Sandra Hines | EurekAlert!
Further information:
http://www.washington.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Emissions from road construction could be halved using today’s technology
18.05.2020 | Schwedischer Forschungsrat - The Swedish Research Council

nachricht When every particle counts: IOW develops comprehensive guidelines for microplastic extraction from environmental samples
11.05.2020 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

New 5G switch provides 50 times more energy efficiency than currently exists

27.05.2020 | Information Technology

Return of the Blob: Surprise link found to edge turbulence in fusion plasma

27.05.2020 | Physics and Astronomy

Upwards with the “bubble shuttle”: How sea floor microbes get involved with methane reduction in the water column

27.05.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>