Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can carbon sequestration solve global warming?

17.02.2003


The U.S. Government is spending millions of dollars to research the feasibility of stuffing carbon dioxide into coal seams and fields of briny water deep beneath the Earth. But, a scientist at the American Association for the Advancement of Science (AAAS) Annual Meeting argues that the government isn’t thinking big enough in its plans to remove carbon dioxide from the atmosphere.



Dissatisfied with the long-term potential of most current technologies for carbon sequestration, Klaus Lackner, Ewing-Worzel Professor of Geophysics at Columbia University, has designs for new power plants that would capture carbon dioxide before it leaves the facility, as well as for "synthetic trees" that would pluck carbon from the air, mix it with magnesium silicate, and store the carbon in the "rocks" that would result from the chemical interaction between the elements.

"Injecting carbon underground is a short-term solution," Lackner said. "The oil industry has done this with 20 million tons a year in West Texas, but that is not the scale we’re talking about here. We need to find a way to put away 20 billion tons." The Intergovernmental Panel on Climate Change has estimated that worldwide carbon dioxide emissions could more than triple over the next 100 years, from 7.4 billion tons of carbon per year in 1997 to approximately 20 billion tons per year by 2100. Lackner argued that large-scale carbon sequestration would allow the continued use of carbon-based fuels during the time needed to develop alternative sources of energy.


Encouraged by preliminary reports indicating the feasibility of carbon sequestration in coal seams and deep saline reservoirs, the U.S. Department of Energy recently announced it will fund public-private ventures to explore the capture of carbon, but researchers say there are considerable barriers to be overcome before the technology can be widely implemented. Injecting carbon into coal seams, for example, would force millions of gallons of salty water to the Earth’s surface, substantially greater amounts than the briny water produced during recovery of natural gas.

"This is not a trivial problem," said Curt White, Carbon Sequestration Science Focus Area Leader at the National Energy Technology Laboratory, Pittsburgh, PA, who will report on new findings regarding the physical and chemical phenomena that take place when carbon dioxide is injected into coal seams, and discuss the projected storage capacity of coal seams.

White will detail some of the technological obstacles to performing sequestration of carbon dioxide in deep unmineable coal beds, as well as parallel efforts to identify and recover the methane gas that is found in some of those sites. The valuable gas offers hope that the cost of capturing carbon can be covered.

Water disposal is a challenge because high concentrations of salts and other dissolved solids can be toxic to some organisms, White said. "Development of technologies to properly dispose of huge amounts of produced water is a problem area that needs further research." White and his colleagues are studying surveys conducted by the U.S. Bureau of Mines to determine which coal seams in the United States might contain the most methane. The researchers are also exploring the long-term impact of pumping carbon into coal seams and brine fields.

"We now have a much better understanding of what we think is going to happen," White said. "I think that with the proper research and the right resources, the problem areas can be overcome."

The capture of carbon will not become routine, however, until steps are taken to reduce greenhouse gas emissions, according to Howard Herzog, principal research engineer at Massachusetts Institute of Technology Laboratory for Energy and the Environment.

"Unless the economic incentives are in place, the technology is not going to go anywhere," said Herzog, who studies the economics of carbon sequestration. "Right now, the price of emitting carbons is almost free. If it goes up to about $100 per ton of carbon produced, you’d begin to see some significant scale of capture and storage."


Monica Amarelo | EurekAlert!
Further information:
http://www.aaas.org/

More articles from Ecology, The Environment and Conservation:

nachricht A Rescue Plan for the Ocean
16.08.2019 | Institute for Advanced Sustainability Studies e.V.

nachricht Burst Hope: No chance for environment-relieving plastic decomposition by bacteria
07.08.2019 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

Im Focus: Self healing robots that "feel pain"

Over the next three years, researchers from the Vrije Universiteit Brussel, University of Cambridge, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI-Paris) and Empa will be working together with the Dutch Polymer manufacturer SupraPolix on the next generation of robots: (soft) robots that ‘feel pain’ and heal themselves. The partners can count on 3 million Euro in support from the European Commission.

Soon robots will not only be found in factories and laboratories, but will be assisting us in our immediate environment. They will help us in the household, to...

Im Focus: Scientists create the world's thinnest gold

Scientists at the University of Leeds have created a new form of gold which is just two atoms thick - the thinnest unsupported gold ever created.

The researchers measured the thickness of the gold to be 0.47 nanometres - that is one million times thinner than a human finger nail. The material is regarded...

Im Focus: Study on attosecond timescale casts new light on electron dynamics in transition metals

An international team of scientists involving the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) in Hamburg has unraveled the light-induced electron-localization dynamics in transition metals at the attosecond timescale. The team investigated for the first time the many-body electron dynamics in transition metals before thermalization sets in. Their work has now appeared in Nature Physics.

The researchers from ETH Zurich (Switzerland), the MPSD (Germany), the Center for Computational Sciences of University of Tsukuba (Japan) and the Center for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Working out why plants get sick

16.08.2019 | Life Sciences

Newfound superconductor material could be the 'silicon of quantum computers'

16.08.2019 | Physics and Astronomy

Stanford develops wireless sensors that stick to the skin to track our health

16.08.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>