Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trees may contribute to ozone problem

26.06.2002


Trees may not actually commit suicide, but certain species do produce pollutants that hamper their own growth while contributing to global climate changes and causing harm to other life forms, contend two Texas A&M University researchers.



Renyi Zhang, an atmospheric chemist, is studying one such substance, isoprene, given off by oak trees and leading to increased ozone in our atmosphere. Working under a $300,000 grant from the National Science Foundation, Zhang and chemistry professor Simon North have taken on the challenge of unraveling the more than 1,000 reactions that transform organically released isoprene into toxic atmospheric pollutants.

"Air pollution is probably one of the most serious problems facing humankind in the 21st century," said Zhang, a professor in the College of Geosciences. "And certainly, much of that pollution results from human activities. But most people are not aware of the role played by chemical reactions which change substances produced by biogenic species into harmful airborne pollutants.


"Isoprene - C5H8 - is released by the respiration of oak trees and is the second-most abundant naturally produced hydrocarbon (after methane) in our atmosphere," he continued.

"After a complicated series of chemical reactions, isoprene facilitates ozone production, so increased isoprene means more ozone in the air."

Ozone in the upper atmosphere blocks out harmful ultraviolet radiation from the sun, Zhang explained, but nearer the ground, it traps infrared radiation reflected back up from Earth and contributes to heating the air near the planet’s surface, the so-called "Greenhouse Effect." So, more ozone can mean rising temperatures near ground-level, contributing to global warming.

"Although near-ground ozone has some beneficial effects, providing excited oxygen atoms needed to produce the free OH radicals that help to bind other chemicals like sulfur and cleanse them from the atmosphere, excess ozone proves harmful to the health of humans and plants," Zhang said. "For example, too much ozone can retard tree growth or even kill trees. And if too many trees die, there will be more CO2 in the air, further trapping heat and raising the temperature of the planet."

Zhang and North are studying isoprene oxidation related to oak trees in the Houston area, where ozone is contributing to increasing air pollution. They are seeking to understand the critical reactions out of the 1,000 in the isoprene to ozone chain in order to find ways to abate air pollution and allow trees to continue their life-cycle without increasing environmental damage.

Zhang will be using laboratory apparatus to study isoprene using chemical ionization mass spectrometry, while North will look at the chemical process using laser-induced fluorescence. Both researchers also employ methods of quantum chemical calculation to analyze their experimental results. In addition to the NSF grant, their work is being funded by the Welch Foundation, the Texas Advanced Research Program (Chemistry) and the U.S. Department of Energy (DOE).

"The isoprene chain reaction is very complicated - in fact, it’s been studied for over 30 years without significant results with regard to fundamental details," said Zhang. "Dr. North and I seeking to discover the direction in which reaction pathways proceed. If we can fully understand the critical steps in the reaction, maybe we can determine where best to intervene in the process to keep both our oak trees and ourselves healthier."


Contact: Judith White, 979-845-4664, jw@univrel.tamu.edu; Renyi Zhang, 979-845-7656, zhang@ariel.met.tamu.edu

Judith White | EurekAlert!
Further information:
http://www.tamu.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Project provides information on energy recovery from agricultural residues in Germany and China
13.02.2020 | Deutsches Biomasseforschungszentrum

nachricht New exhaust gas measurement registers ultrafine pollutant particles for the first time
21.01.2020 | Technische Universität Graz

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>