Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pole-to-Pole Flights Provide First Global Picture of Greenhouse Gases

02.02.2009
An advanced research aircraft flew from the Arctic to the Antarctic this month, the first step in a three-year project to make the most extensive measurements of greenhouse gases to date. The resulting worldwide picture of greenhouse gases will help society create policies to curb global warming.

A team of scientists has successfully flown from the Arctic to the Antarctic this month aboard an advanced research aircraft, the first step in a three-year project to make the most extensive airborne measurements of carbon dioxide and other greenhouse gases to date. The findings will help scientists determine where and when greenhouse gases enter and leave the atmosphere, a critical prerequisite for taking steps to curb global warming.

"This mission is providing us with amazing data about carbon dioxide and other greenhouse gases from all over the world," says Britton Stephens, a scientist with the National Center for Atmospheric Research (NCAR) and one of the project's principal investigators. "This will lead to improved predictions about greenhouse gases and enable society to make better decisions about climate change."

The three-year campaign relies on the powerful capabilities of a specially equipped Gulfstream V aircraft, owned by the National Science Foundation (NSF) and operated by NCAR. The research jet, known as the High-performance Instrumented Airborne Platform for Environmental Research (HIAPER), has a range of about 7,000 miles (11,000 kilometers), which allows scientists to traverse large regions of the Pacific Ocean without refueling, gathering air samples along the way. Researchers will take the jet from an altitude of 1,000 feet (300 meters) above Earth's surface up to as high as 47,000 feet (14,000 meters), into the lower stratosphere.

The project, HIAPER Pole-to-Pole Observations (HIPPO), brings together scientists from organizations across the nation, including NCAR, Harvard University, the National Oceanic and Atmospheric Administration (NOAA), the Scripps Institution of Oceanography, the University of Miami, and Princeton University. NSF and NOAA are funding the project.

Building a global picture

The scientists departed January 8 on the first of five missions. Their flights took them from Colorado to Alaska and the Arctic Circle, then south to New Zealand and Antarctica. Later this week, the jet will return from Easter Island to Colorado.

The four subsequent missions through mid-2011 will follow similar flight paths, but at different times of year, resulting in a range of seasonal snapshots of concentrations of greenhouse gases. The research will help answer such questions as why atmospheric levels of methane, a potent greenhouse gas, have tripled since the Industrial Age and are on the rise again after leveling off in the 1990s. Scientists will also analyze other gases and particles in the atmosphere that can affect temperatures by influencing clouds or the amount of solar heat that reaches Earth's surface.

"We're flying this wonderful plane all over the globe and taking a slice out of the atmosphere to see what's in it," says principal investigator Steven Wofsy of Harvard. "It's the first time we'll be able to see the whole globe all at once in great detail. This is giving us a completely new picture of how greenhouse gases are entering the atmosphere and being removed from it, both by natural processes and by humans."

"This is the first time that anyone has systematically tried to map the distribution of carbon dioxide and related gases from the Arctic to the Antarctic and from the surface to the upper atmosphere," says Ralph Keeling of Scripps, another principal investigator. "Oceanographers have been doing similar mapping of the ocean for decades. But for the atmosphere, the approach is revolutionary. Each day we get a snapshot of another piece of the world. We are assembling a global picture, flight by flight."

Tracking an invisible gas

One of the major challenges in climate science is tracking the approximately 30 billion tons of carbon emitted each year from motor vehicles, factories, deforestation, and other sources. About 40 percent of this invisible gas accumulates in the atmosphere, with the rest apparently being absorbed by oceans and terrestrial ecosystems.

Flying from pole to pole will enable the HIPPO team to study how logging and regrowth in northern boreal forests and tropical rain forests, as well as changes in upper atmospheric winds around Antarctica, are affecting levels of carbon dioxide (CO2) in the atmosphere. The research will also provide a baseline against which to evaluate the success of efforts to curb carbon dioxide emissions and enhance natural CO2 uptake and storage.

This task of balancing the "carbon budget" is gaining urgency as the world moves toward agreements to limit greenhouse gases. Some countries or regions could be rewarded with carbon credits for taking steps such as preserving forests believed to absorb carbon dioxide.

"Huge sums of money could exchange hands based on where the carbon appears to be going," NCAR's Stephens says.

A flying laboratory

Scientists have used ground stations and a few satellites to determine the global average concentration of CO2 concentrations in the atmosphere. But ground stations can be separated by thousands of miles, which hinders their ability to measure CO2 in specific locations. And the limited views from satellites do not enable scientists to make regional measurements.

Many of the instruments aboard HIAPER have been designed especially for the HIPPO project. They will enable scientists to measure CO2 and other gases across the planet in real time, instead of collecting a limited number of samples in flasks and bringing them back to the lab for later analysis.

"Essentially, we have a flying laboratory that we're taking around the world, sucking in air and doing the measurements as we go," Stephens says.

"By using the unique capabilities of the research jet, we are gaining tremendous insights into the atmosphere," says Anne-Marie Schmoltner, who is helping to oversee the project as NSF section head for lower atmosphere research. "Scientists who work with computer models will be busy for years using this information to refine our understanding of atmospheric processes and the role of greenhouse gases."

The University Corporation for Atmospheric Research manages the National Center for Atmospheric Research under sponsorship by the National Science Foundation. Any opinions, findings and conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

David Hosansky | Newswise Science News
Further information:
http://www.ucar.edu
http://www.ucar.edu/news/releases/2009/hippovisuals.shtml

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Behavior-influencing policies are critical for mass market success of low carbon vehicles

17.07.2018 | Power and Electrical Engineering

Plant mothers talk to their embryos via the hormone auxin

17.07.2018 | Life Sciences

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>