Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

No oxygen in Eastern Mediterranean bottom-water

29.09.2008
Research from Utrecht University shows that there is an organic-rich bed of sediment in the floor of the Eastern Mediterranean. This bed formed over a period of about 4000 years under oxygen-free bottom-water conditions.

A wet climatic period was responsible for the phenomenon. According to climate scenarios, the climate may become wetter in this area, potentially giving rise again to a period of oxygen-free bottom-water. These results are published in the September issue of Nature Geoscience.

Alternating organic-rich and organic-poor beds have been deposited on the floor of the Eastern Mediterranean. These deposits coincide with the alternation of wet and dry climatic periods. Researchers believe that the organic-rich beds, called sapropels, can originate in two ways: 1. More organisms live in the surface water because, for example, rivers introduce more nutrients. As a result, more organisms sink to the bottom when they die. 2. The organic material is better preserved. If dead organisms sink to an oxygen-free bottom, the organic material breaks down less well.

Sapropel
Gert de Lange investigated the most recently developed bed, sapropel S1. This bed formed between 9800 and 5700 years ago. At that time, an increased influx of fresh water during a wet climatic period led to the formation of this organic-rich bed. This formation occurred simultaneously over the entire Eastern Mediterranean at water depths of more than 200 metres. During this 4100-year period, the deep Eastern Mediterranean was found to be devoid of oxygen at water depths below 1800 metres. Going upward from this depth level, the organic content of sapropel S1 decreases corresponding to an increasing average oxygen content and concomitant breakdown of the organic material.

This research shows that there is a high chance of finding organic-rich deposits in an environment devoid of oxygen. Climate change may contribute to the formation of organic-rich beds. Besides sequestering large quantities of CO2, these separated beds can also be converted into oil over the course of time.

This research forms part of the PASS project, a marine programme in the Eastern Mediterranean. NWO Earth and Life Sciences financed the necessary logistics, such as ship and equipment lease via the National Research Cruise Programme.

Kim van den Wijngaard | alfa
Further information:
http://www.nwo.nl/nwohome.nsf/pages/NWOA_7JHJ49_Eng

More articles from Ecology, The Environment and Conservation:

nachricht Surface clean-up technology won't solve ocean plastic problem
04.08.2020 | University of Exeter

nachricht Improving the monitoring of ship emissions
03.08.2020 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>