Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Impacts of climate change on lakes

22.10.2008
Climate change will have different effects on lakes in warmer and colder regions of the globe.

This is the conclusion reached by Japanese and German researchers following studies of very deep caldera lakes in Japan. Scientists from Hokkaido University, the Hokkaido Institute of Environmental Sciences, Kagoshima University and the Helmholtz Centre for Environmental Research (UFZ) compared current measurements with measurements taken 70 years ago.

This confirmed a rise in temperatures in the deep water layers of lakes in the south of Japan, while the deep water temperatures of lakes in the north remained the same. Rising temperatures can lead to changes in nutrient exchange and turnover in the water. In certain circumstances, winter circulation behaviour can be so severely affected by rising temperatures and other climatic factors that oxygen supplies to the lower depths become insufficient for many organisms, leading to an accumulation of nutrients in the deep water, say the researchers writing in Geophysical Research Letters.

Measurements from 2005 and 2007 in deep Japanese caldera lakes provide information about the distribution of dissolved nutrients in the water. There are two reasons why this chain of lakes makes an excellent research subject for providing general information about circulation under changeable climatic conditions that will be valid for lakes outside the research area. Firstly, the lakes cover a climate gradient that stretches from the south of Japan to the northern island of Hokkaido. Secondly, oxygen and nutrient exchange between the deep water and the surface in the lakes under investigation is controlled almost exclusively by temperature differences.

The researchers found that almost all of the lakes studied displayed a good distribution of the dissolved nutrients, despite their enormous depths of up to 423 metres (Lake Tazawa, Honshu). The lakes can be divided into two main depth-circulation categories based on their climatic conditions.

The researchers expect deep water temperatures of colder lakes (e.g. Lake Shikotsu, Hokkaido) to remain unchanged in warmer winters, provided the temperature rises are not excessive, while deep water temperatures in warmer lakes are likely to rise. This was confirmed by comparisons with single-point measurements from the 1930s. The scientists warn that a very steep rise in winter temperatures over the years results in water temperatures that do not fall anywhere near as low as the temperatures of the previous years and depth circulation can cease altogether (Lake Ikeda, Kyushu). In such circumstances oxygen supplies and nutrient distribution would be interrupted, which would have impacts on organisms.

Water quality in lakes is an important economic factor for tourism, water companies and fishing businesses. Together with colleagues in Australia, Canada and Spain, UFZ scientists are therefore working on numeric lake simulation models which are designed to provide predictions about water quality under altered conditions.

Publications
Boehrer,
B., R. Fukuyama, and K. Chikita (2008), Stratification of very deep, thermally stratified lakes, Geophys. Res. Lett., 35, L16405, doi:10.1029/2008GL034519.
http://www.agu.org/pubs/crossref/2008/2008GL034519.shtml
The research was founded by the Japan Society for the Promotion of Science (JSPS).
Boehrer, B., and M. Schultze (2008), Stratification of lakes, Rev. Geophys., 46, RG2005, doi:10.1029/2006RG000210.

http://www.agu.org/pubs/crossref/2008/2006RG000210.shtml

Further
Information:
Dr Bertram Boehrer
Helmholtz Centre for Environmental Research (UFZ)
Telephone: +49-391-810-9441
http://www.ufz.de/index.php?de=1830
and
Prof. Kazuhisa CHIKITA
Laboratory of Physical Hydrology,
Faculty of Science,
Hokkaido University
Sapporo, JAPAN
Phone: +81-11-706-2764
or
Tilo Arnhold (UFZ press officer)
Telephone: +49-341-235-1269
Mail: presse@ufz.de
Links:
Stratifcation
of Lakes:
http://www.ufz.de/index.php?en=17114
Stirred, not shaken
from: UFZ Magazine 12 (2006), page 37-39 http://www.ufz.de/data/magazin_engl_web28815.pdf
At the Helmholtz Centre for Environmental Research (UFZ) scientists research the causes and consequences of far-reaching environmental changes. They study water resources, biological diversity, the consequences of climate change and adaptation possibilities, environmental and biotechnologies, bio energy, the behaviour of chemicals in the environment and their effect on health, as well as modelling and social science issues. Their guiding research principle is supporting the sustainable use of natural resources and helping to secure these basic requirements of life over the long term under the influence of global change. The UFZ employs 900 people at its sites in Leipzig, Halle and Magdeburg. It is funded by the German government and by the states of Saxony and Saxony-Anhalt.

The Helmholtz Association helps solve major, pressing challenges facing society, science and the economy with top scientific achievements in six research areas: Energy, Earth and Environment, Health, Key Technologies, Structure of Matter, Transport and Space. With 25,700 employees in 15 research centres and an annual budget of around EUR 2.3 billion, the Helmholtz Association is Germany’s largest scientific organisation. Its work follows in the tradition of the great natural scientist Hermann von Helmholtz (1821-1894).

Tilo Arnhold | Helmholtz Centre
Further information:
http://www.ufz.de/index.php?en=17265
http://www.ufz.de

More articles from Ecology, The Environment and Conservation:

nachricht New mathematical model can help save endangered species
14.01.2019 | University of Southern Denmark

nachricht Foxes in the city: citizen science helps researchers to study urban wildlife
14.12.2018 | Veterinärmedizinische Universität Wien

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

Im Focus: Programming light on a chip

Research opens doors in photonic quantum information processing, optical signal processing and microwave photonics

Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a new integrated photonics platform that can...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Artificially produced cells communicate with each other: Models of life

17.01.2019 | Life Sciences

Velcro for human cells

16.01.2019 | Life Sciences

Kiel physicists discover new effect in the interaction of plasmas with solids

16.01.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>