Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Growing green roofs

07.09.2009
Sedum studied as practical, high-performing roof cover

One way to maximize the eco-friendly factor of a structure is to include a green roof—and this doesn't refer to the paint color. "Greening" a roof, or covering a roof with vegetation, is gaining popularity in North America, where the number of green roofs increased 30% from 2006 to 2007.

Benefits of green roofs include improved storm water management, energy conservation, reduced noise and air pollution, improved biodiversity, and even a better return on investment than traditional roofing.

But a healthy roof requires the selection of a species that can survive extreme climates and propagate easily to reduce erosion and weed growth. Kristin L. Getter of Michigan State University's Department of Horticulture led a study to determine the effect of the growing medium's depth on the success of green roofs. The research study, published in a recent issue of HortScience, focused on Sedum, a variety of succulent known for its drought tolerance.

Plots were constructed using the drainage mats and waterproofing systems typical of green roofs, but the growing material varied in depth from 4 cm, 7 cm, and 10 cm. Twelve species of Sedum were planted, fertilized, and watered once. The moisture of the growing material was measured at random times each week. Measurements of chlorophyll fluorescence were taken to monitor the health of the plants during a variety of environmental conditions.

Plants were monitored over the course of four years. Since the average lifespan of the inorganic components of a green roof is about 45 years, the researchers determined that it was important to study the longevity of the plants. The study found that the shallowest plot had the lowest moisture levels on average and dried the fastest after a rain. At the 4-cm depth, four species failed to exhibit significant growth over the 4-year period.

Five species showed no or little growth at the 7-cm depth, and six species showed no or little growth at a depth of 10 cm. Some species declined over the 4-year period at the varying depths. The remaining plants that flourished were the same species for all three depths (S. floriferum, S. sexangulare, S. spurium 'John Creech', and S. stefco). The 4-cm depth also included two other species (S. hispanicum and S. reflexum 'Blue Spruce').

Furthermore, the results indicate that, for the surviving and most-abundant species, there is no benefit to depths greater than 7 cm, which would appear to be good news considering shallow depths are more desirable because they make for lighter roof loads. "However, at deeper depths, these plants would likely be healthier, contain greater biomass, and be less susceptible to adverse environmental conditions. This study shows the importance of growing medium depth for plant performance and demonstrates the need for long-term evaluation of species for use in this green practice", concluded the researchers.

The complete study and abstract are available on the ASHS Hortscience electronic journal web site: http://hortsci.ashspublications.org/cgi/content/abstract/44/2/401

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application.

Michael W. Neff | EurekAlert!
Further information:
http://www.ashs.org

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>